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Abstract

The microfacet class of BRDF models is frequently used to calculate optical scatter

from realistic surfaces using geometric optics, but has the disadvantage of not being

able to consider wavelength dependence. This dissertation works toward development

of a closed-form approximation to the BRDF that is suitable for hyperspectral remote

sensing by presenting measured BRDF data of 12 different materials at four differ-

ent incident angles and up to seven different wavelengths between 3.39 and 10.6 µm.

The data was intended to be fit to various microfacet BRDF models to determine

an appropriate form of the wavelength scaling. However, when fitting the microfacet

models to measured data, the results indicated a breakdown in the microfacet model

itself. To overcome this deficiency, elements of microfacet BRDF models are com-

pared to elements of scalar wave optics BRDF models, which inherently contain a

wavelength dependence. This analysis led to a theoretical understanding of how to

modify microfacet BRDF models to maintain the simplicity of a closed-form model,

while better approximating the underlying physics. These results are expected to en-

able the development of even more robust closed-form models of the BRDF that can

be applied to wavelength-sensitive applications such as hyperspectral remote sensing.
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EXPERIMENTAL AND THEORETICAL BASIS FOR A CLOSED-FORM

SPECTRAL BRDF MODEL

I. Introduction

Hyperspectral Remote Sensing (HSRS) is an area of interest to the Air Force for

its use in material identification. In HSRS, a data cube is captured containing two-

dimensional spatial data for several wavelengths, typically spanning the Visible and

Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), or Long-Wave Infrared

(LWIR) spectrum [19]. In such a collection, one must make an assumption about

how light is reflected off materials in the scene.

To date, HSRS has primarily relied upon a diffuse (Lambertian) approximation to

scattering that is not representative of all materials [19]. Instead of assuming a Lam-

bertian reflector, a more general approach is described by a Bidirectional Reflectance

Distribution Function (BRDF). The BRDF is a 5-dimensional function that defines

the reflectance distribution of a surface for any incident solid angle, outgoing solid an-

gle, and wavelength for realistic surfaces expected to be observed in a remotely sensed

scene [48]. As the function space is so large and general electromagnetic calculations

for realistic surfaces are quite complex, BRDF models have been developed to make

measurement possible without sampling the entire 5-dimensional space. These mod-

els generally focus on the angular dependence of BRDFs, and do not often account

for the wavelength dependence of the BRDF.

In HSRS, it is possible to obtain very fine wavelength spacing, and variations

in the BRDF as a function of wavelength may provide important clues for material

identification. Since HSRS is often focused on identifying the complex index of re-
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fraction (or analogously the complex dielectric constant) of a material in a remotely

sensed scene, it is most desirable to develop a model that directly accounts for all

wavelength dependences in the scene that are not related to the complex index of

refraction, leaving only the wavelength variations relating to the complex index of

refraction to make a material identification.

Typical measurements of the BRDF of a sample are made at a relatively small

number of wavelengths, then interpolated based on unitless directional reflectance

measurements to scale the overall functional shape. (The unitless directional re-

flectance is the integral of the BRDF over the hemisphere.) In the MWIR/LWIR,

one common technique is to linearly interpolate between 3.39 µm and 10.6 µm to

obtain estimated BRDF values. However, this linear interpolation in the MWIR and

LWIR has not been experimentally verified in the literature. Furthermore, a prelimi-

nary analysis based on existing BRDF data that is presented in Chapter III suggests

this linear interpolation may not accurately account for BRDF wavelength variation.

Since the linear interpolation is not well quantified in the literature, it is helpful

to examine BRDF models to gain insight on what may have a spectral dependence.

When examining BRDF models, one popular class of models is the microfacet model,

which assumes diffraction and interference effects are negligible. A detailed analysis

of these models is discussed in Chapter III. Neglecting volumetric reflection effects

(which are not directly modeled by the microfacet theory), this class of models has

a known wavelength dependence only in the Fresnel reflection term, directly related

to the index of refraction of a material. However, when examining certain BRDF

databases that assume a microfacet BRDF model, such as the Non-convential Ex-

ploitation Factors (NEF) database [46], it is known that the size of the specular

reflection lobe also changes as a function of wavelength. It is therefore anticipated

that experimental investigation of BRDFs in the MWIR and LWIR may result in

2



uncovering other wavelength dependencies currently unaccounted for, beyond the

complex index of refraction. These wavelength dependencies that are unaccounted

for in microfacet BRDF models have the potential to be wrongly attributed to the

index of refraction.

1.1 Problem Statement

The overarching problem to be solved by research in the area of spectral BRDF

variation is to develop a closed-form BRDF approximation that accounts for the

wavelength-dependent properties of the BRDF, while accurately describing the BRDF

properties of a wide class of materials. A closed-form approximation that is not

highly parameterized is desirable because HSRS already faces the monumental task

of determining atmospheric properties from a remotely-sensed scene, which is an area

of intense and ongoing research.

Solving this entire problem is beyond the scope of this research. The problem can

initially be broken down as follows:

• Determine whether BRDF may have a significant impact on HSRS using a basic

scene model

• Catalog current closed-form, physics-based BRDF models

• Determine whether current models can be modified in a simple manner to insert

a wavelength-dependent term

• If a simple modification is not possible, determine how closed-form geomet-

ric optics models relate to more accurate (but more computationally complex)

physical optics BRDF models to understand how to arrive at novel closed-form

approximations

3



• Test novel closed-form approximations to the BRDF

• Propose a novel, physics-based, closed-form approximation to the BRDF suit-

able for HSRS that works at a wide range of wavelengths and for a wide class

of materials

The first four items in the list are developed in this work. Additionally, a novel

closed-form approximation to the BRDF, motivated by physical optics, is presented

for rough surfaces that more accurately describes the BRDF without adding any

additional parameters; this approach is generic enough to apply to any BRDF model

that uses a Fresnel reflection component. The rough and polished surface spectral

variation is developed from theory, and is backed by measured spectral BRDF data,

providing the basis for a comprehensive spectral model to be developed in the future.

Figure 1 illustrates the problem addressed by this dissertation. Items in blue are

provided as background. Items in green are addressed in this dissertation. The item

in yellow is identified for future work.

The initial approach was to proceed down the left column of Figure 1, using

existing physically based closed-form BRDF models to fit measured spectral BRDF

data to a model, then determine how the model parameters vary with wavelength.

However, as will be detailed in Chapter V, BRDF fitting was more problematic than

initially expected, with fit error in excess of an order of magnitude for a material

spanning four orders of magnitude in dynamic range of the BRDF. This problem

could be due to the microfacet distribution function, which is primarily responsible

for the overall shape of the BRDF, so the next step was to perform BRDF fitting

using a more flexible distribution function. That approach was marginally better,

but the fits still differed significantly from measured data by as much as an order of

magnitude. The next step was to examine the raw BRDF data and determine whether

the width of the specular lobe is varying in a similar manner in all datasets measured,
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Figure 1. Illustration of the problem addressed by this dissertation. Items with a
blue background are described in the background. Items with a green background are
addressed in this dissertation. The item with a yellow background is left for future
work.

which could indicate there is a possible unknown distribution that could be developed

to perform the wavelength scaling. (As will be discussed in Chapter III, the specular

lobe is where the greatest error occurs in current microfacet BRDF wavelength scaling

techniques, which is why this attribute was chosen for further examination.) This

method failed to produce consistent results, indicating a parameter modification to

existing models was not straightforward.

Since these methods all failed, it appears there are fundamental flaws with the

closed-form microfacet BRDF approximation. Another class of BRDF models, phys-

ical optics models, includes diffraction, but results in a model that has no known

general closed-form approximation that is valid over the entire hemisphere. For this
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reason, direct use of a physical optics model was not considered. However, if these

physical optics models could be compared to the microfacet models, which are closed-

form, it may be possible to learn what may be improved in the microfacet model to

determine how to better approximate the BRDF with a closed-form model. This novel

comparison is performed in Chapter VI. This comparison leads to a relationship be-

tween the closed-form elements of both types of models in the limits of a polished

or very rough surface. These novel theoretical developments are backed by experi-

mental observations developed in the analysis of the measured spectral data, leading

to confidence in the closed-form wavelength scaling for these two limiting cases and

an understanding of how to expand this relationship to other angles and surfaces.

These theoretical results form a basis for the future development of a comprehensive

spectral BRDF model.

1.2 Dissertation Organization

Chapter II addresses whether the BRDF may have a noticeable impact on HSRS

by assuming a very basic scene and comparing the results of a scene with a Lambertian

model to the results of a scene with a BRDF model. Following the development

presented in [6], this chapter shows that, in a basic scene model, the BRDF has

the potential to affect the calculated brightness temperature of objects in a scene

dramatically. Furthermore, the BRDF has potential to affect the spectral results

observed.

In Chapter III, BRDF theory is presented in depth. This chapter includes an

overview of common microfacet (geometric optics) BRDF models that have been

rewritten into a common form that more readily allows for direct comparison, fol-

lowing the development in [5]. A brief expansion into polarimetric BRDF models is

then developed, followed by examination of current wavelength-dependent techniques.
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The deficiencies in current wavelength-dependent scaling techniques for closed-form

microfacet models is then discussed. Finally, this chapter presents background on

one of the more complete physical optics-based BRDF models. Although this model

has no general closed-form that is easy to compute, it will be instructive later in this

dissertation.

Chapter IV next describes the measurement process used to gather wavelength-

dependent experimental BRDF data. To uncover the wavelength dependence, BRDF

data was collected at multiple wavelengths between 3.39 µm and 10.6 µm using

HeNe, CO2, and Quantum Cascade Lasers (QCLs). These measurements are quite

time-consuming to make, but proper BRDF measurements require the high intensity

and narrow wavelength band of laser sources at fixed wavelengths because the range

of the BRDF function spans several orders of magnitude. This chapter includes a

discussion of how to measure polarimetric BRDF, which was the initial approach

planned for this work, then presents some results from measurements made on a

few samples to determine that unpolarized measurements can be made in a much

simpler fashion. That simpler process is then outlined. The chapter concludes with

an uncertainty analysis for the measurement process used in this dissertation.

Chapter V then presents results from the measured BRDF data of 12 different

samples at up to seven different wavelengths. This chapter addresses the third item

discussed in Section 1.1, attempting to add a simple wavelength dependence to the

BRDF. Initially, the approach to be taken was to fit these BRDFs to microfacet (geo-

metric optics) models and observe the wavelength scaling that may need to be added

to the microfacet models. However, after beginning this process, it became apparent

that there were actual deficiencies in the microfacet model itself that needed to be

better understood. With this observation, it also became apparent that the micro-

facet model needed to be examined in more detail to explain the wavelength variation.

7



From that initial attempt, three key observations are made: there is no straightfor-

ward wavelength-dependent addition that can be inserted into current models; there

does not appear to be a simple modification to current models that would allow for a

simple wavelength-dependent addition; and even at a single wavelength, closed-form

BRDF models do not fit a wide class of materials well; it is especially problematic

as wavelength increases (since materials become more specular). This chapter con-

cludes by examining the role of the cross section conversion term, which is a part of

microfacet models, and which diverges to infinity at grazing angles but plays a key

role in microfacet BRDF models to explain a difference in magnitude of the specular

peak as a function of angle; this discussion at the end of Chapter V was published in

[8]. At the end of this chapter, it becomes apparent that novel theoretical develop-

ments are required to make progress on understanding how to properly account for

the wavelength dependence of the BRDF.

The BRDF literature tends to pick either microfacet models (for a closed-form

model) or scalar wave optics models (for a more physically accurate solution at the

expense of much greater computational resources being required). This dissertation

uses both models to determine similarities and differences, leading to enhanced phys-

ical insight as to what the microfacet model actually represents. Chapter VI presents

novel theoretical work to address the fourth item in the problem statement by com-

paring the microfacet (geometric optics) BRDF models to scalar wave optics BRDF

models, following the discussion in [7] and in a journal article submitted to Optics

Express [10]. This comparison is performed in both the polished and very rough

surface limits, and represents the development of a novel theoretical understanding

of where each term in the microfacet model derives in a scalar wave optics BRDF

approach. Furthermore, the developments in this chapter provide a theoretical expla-

nation for the results observed in Chapter V when examining the experimental BRDF
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data. An understanding of the limitations of current microfacet models is thoroughly

developed, and for the first time each term in the microfacet BRDF model is directly

related to terms in a scalar wave optics BRDF model. Finally, this chapter proposes

a novel BRDF model, based upon these theoretical results. This novel BRDF model

allows for more accurate BRDF fitting at large incident or scattered angle, while not

compromising the BRDF fit at other angles.

Finally, Chapter VII summarizes key results and discusses future work.
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II. Impact of BRDF on Basic HSRS Model

In this chapter, the motivation for applying a BRDF to HSRS is developed. A

very simple scene model is developed for a notional hyperspectral scene. Then, the

radiance and brightness temperature are calculated for a few different BRDF models,

and compared to the Lambertian case (which is currently used in many hyperspectral

algorithms). The purpose of this chapter is to show the potential impact of the BRDF

on HSRS. This work was presented at SPIE Optics and Photonics in 2014[6].

The BRDF defines the ratio of the exiting reflected radiance to the incident irra-

diance for materials; that is, it describes optical scatter off all surfaces, even if it is

not perfectly smooth. Nicodemus formally defined the BRDF as [48]

fr(ω̂i, ω̂s, λ) =
dLs(ω̂i, ω̂s, λ)

dEi(ω̂i, λ)
.

In this notation, λ represents the wavelength of light, ω̂i is the incident unit vector,

and ω̂s is the scattered (outgoing) unit vector, where ω̂ = [1, θ, φ]T is a unit vector

pointing from the point of intersection with the material’s surface to the incident (or

outgoing) direction, with spherical coordinates θ and φ (assuming ẑ is normal to the

surface); see Figure 2. Ls represents the scattered radiance, and Ei represents the

incident irradiance. Since the BRDF is defined by radiometric quantities and not

directly from Maxwell’s equations, there are several different BRDF models currently

in use; these models will be discussed in Chapter III in depth.

Total hemispherical-directional reflectance (HDR) for a specified observer location

ω̂s and all incident angles ω̂i can be obtained from the BRDF as

ρH(ω̂s) =

∫ 2π

0

∫ π/2

0

fr(ω̂i, ω̂s) cos θi sin θi dθi dφi. (1)

The HDR, which can be computed from the BRDF, is what is typically thought of
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Figure 2. Basic BRDF geometry, with incident and outgoing vectors relative to the
surface normal ẑ

as reflectance; that is, it is unitless and constrained to be between 0 and 1. However,

it may still depend on viewing direction. The BRDF is a reflectance distribution per

solid angle, possessing units of sr−1 and depending on both incident and scattered

angles. Since the BRDF is not unitless, its value can be any non-negative number,

even if it is larger than 1, as long as the BRDF integrates to a unitless HDR that is

between 0 and 1.

This chapter deals with two BRDF models: Lambertian and measured BRDF data

from Matusik’s Mitsubishi Electronic Research Laboratories (MERL) database [42].

Although the MERL database consists of visible BRDF data, the datasets provide

densely-populated, measured BRDF data for materials with reflectance distributions

that could notionally exist in the LWIR. Furthermore, the MERL data is measured

over three wavelength bands (red, green, and blue). The primary motivation for

using actual measured BRDF data instead of relying on a BRDF model is to ensure

observations are not due to errors in the BRDF model, as no universally accepted

model currently exists. Furthermore, densely-populated BRDF data measured at

multiple wavelengths in the LWIR (or in the MWIR) for the same material is currently
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not readily available, as will be discussed in Chapter III.

A simple scene model is developed to analyze geometric effects in the LWIR.

Two cases are then analyzed: first, treating the BRDF of an object in the scene

as Lambertian; second, treating the BRDF of an object as having the shape of a

material in the MERL database. For each case, the BRDF is scaled to an HDR of

0.1, 0.5, and 0.9; thus, there are a total of six simulations. The relative contributions

of solar, diffuse downwelling, and self-emissive radiation to the overall scene are then

analyzed. Results suggest non-negligible solar radiation at certain observer geometries

may occur even in the LWIR when using a BRDF model in place of the Lambertian

assumption.

Next, this model is extended to obtain the pupil plane radiance at three different

wavelengths, using three different measured BRDFs of the same material from the

MERL database. In this model, the BRDFs were assigned to represent a notional

material at 8 µm, 10 µm, and 12 µm. The wavelength-dependent result was analyzed

for a fixed incident geometry and fixed maximum HDR of 0.9 at all wavelengths, at a

few different observer geometries. Results from this model indicate that the shape of

the resulting pupil plane radiance as a function of wavelength changes, not just the

overall magnitude. These results suggest there is value in pursuing further research

into incorporating BRDF models in the LWIR.

2.1 Scene Model

In this section, the two main components of the scene model will be discussed:

pupil plane radiance calculation and incorporating the MERL BRDF into the scene.
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Radiance Model.

The pupil plane radiance at the observer can be expressed under this simple model

as

Lp(ω̂i, ω̂s, λ) = LS(ω̂i, ω̂s, λ) + Le(ω̂s, λ) + Ld(ω̂s, λ) + Lpath(λ), (2)

where Lp is the pupil plane radiance, LS is the solar radiance upon reflection off the

object, Le is the radiance due to self-emission of the object, Ld is the radiance due

to diffuse downwelling atmospheric emission reflected off the object, and Lpath is the

path radiance. Since this chapter is dealing primarily with a comparison between the

Lambertian approximation and a more directional BRDF, Lpath was neglected since

it does not depend on geometry, BRDF, or HDR; it would essentially add the same

constant offset to each wavelength in both the directional BRDF and Lambertian

cases.

The radiance model used in this chapter is a simple model that assumes the

atmosphere is a spherical shell above the observer–that is, it produces the diffuse

downwelling contribution Ld to the pupil plane radiance related to blackbody radia-

tion. Atmospheric transmission is not modeled; it is again assumed to be a constant.

See Figure 3 for a graphical representation of this basic model.

Under such a simple atmospheric model, the terms LS, Le, and Ld can be expanded

in a straightforward manner. Let LB(T, λ) represent the blackbody radiance of an

object at a given temperature T . The remaining radiances are specified as follows:
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Figure 3. Basic model of the scene employed by this BRDF study. The atmosphere is
treated as a shell with radiation profile of a blackbody at 250 K; the object is assumed
to be a graybody at 300 K; the Sun is assumed to be a blackbody at 5800 K.

LS(ω̂i, ω̂s, λ) = ESE(θi, λ)fr(ω̂i, ω̂s, λ)

= [ΩSELB(TS, λ) cos θi]fr(ω̂i, ω̂s, λ)

Le(ω̂s, λ) = [1− ρH(ω̂s)]LB(To, λ)

Ld(ω̂s, λ) = ρH(ω̂s)LB(Ta, λ),

(3)

where ESE is the solar irradiance incident upon the object and ΩSE is the mean solid

angle subtended by the Sun from Earth, approximated from the mean distance from

the Earth to the Sun and the radius of the Sun. For this model, TS = 5800K was

assumed for the approximate solar blackbody temperature. The surface is assumed

to lie flat on the ground, and is assumed to be isotropic. In this case, there is

an ambiguity in φ: this dissertation adopts the convention that φi = 0 to resolve

this ambiguity. (The Sun’s azimuthal orientation defines the φ = 0 location). The

Sun’s depression angle is represented by θi, which is measured relative to the surface

normal of the object. The object is assumed to be at To = 300K and the atmospheric

downwelling radiation is approximated as a blackbody at Ta = 250K. This simple

model is a good starting point to eliminate all variables except those related directly to

BRDF; such an analysis is beneficial as a first step prior to the more time-consuming

application of a complex atmospheric model.
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MERL BRDF Data in HSRS Scene.

In the modeling equations presented in the previous section, the BRDF of the

object is used directly in calculation of LS; it is also used indirectly via the HDR

in calculation of Le and Ld. In this chapter, two BRDF shapes are analyzed. For

the first BRDF shape, a single-parameter Lambertian BRDF is analyzed, using the

following equation:

fr(ω̂i, ω̂s, λ) =
ρd
π

(4)

where ρd is a parameter equal to the HDR; this was set to 0.1, 0.5, or 0.9 to analyze

three different reflectances. This scaling would be analogous to considering three

different notional materials in a scene that all had the same general BRDF shape,

but a different overall reflectance, and thus a different overall magnitude to the BRDF.

For a Lambertian BRDF, the reflectance does not vary with incident angle, although

this is not generally true for most BRDF models. The Lambertian BRDF is chosen

because it is commonly assumed in HSRS[19].

The second BRDF shape used was from nickel in Matusik’s MERL database[42].

The MERL database was chosen so the actual shape of a BRDF would be used instead

of a modeled shape, as the question of which BRDF model to use is still an area of

active research in computer graphics and scene generation[1, 13, 18, 33, 45, 71, 72];

in fact, even when restricting data to the MERL database, there is no universally

best model, as determined in a study by Ngan[47]. (This will be further discussed

in Chapter III.) In the MERL database, there is no equation governing the BRDF

model. Instead, isotropic BRDF data were obtained for 100 different materials by

illuminating a sphere, allowing collection for several incident and reflected angles

simultaneously. The red, green, and blue channels of a camera were used to collect

the data[42]. These data were densely sampled in both ω̂i and ω̂s, and stored in
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Rusinkiewicz microfacet coordinates[56]; this coordinate system is discussed more in

Chapter III.

A detailed uncertainty analysis was not presented for the MERL data. However,

as will be discussed in detail when performing an error analysis on my BRDF mea-

surements in Chapter IV, the BRDF data is most difficult to measure accurately at

two locations: the peak, and grazing angles. For the measurements presented later

in this work, BRDF data is not measured at grazing angles, but Matusik does make

grazing angle measurements without being careful to account for potential grazing

angle inaccuracies. For this reason, steep BRDF data (that is, θi or θs near 90◦) is

unreliable due to increased noise in the data collection method. As a reminder of

this, all plots showing θ > 70◦ are shaded gray in that region. Since it is expected

that materials become more specular in the LWIR than in the visible portion of the

spectrum, these results are expected to be more significant in the LWIR; thus, using

this visible BRDF data serves as a reasonable preliminary analysis. As was shown in

[25] and will be shown in Chapter V, more carefully measured BRDF data can result

in values that are in excess of the maximum BRDF value used in this initial study,

showing the peak values used here are not unreasonable. The MERL dataset is being

used here to motivate a more detailed examination of BRDF spectral dependence,

but it is not used to draw conclusions on what the form of the spectral dependence

is.

C++ and MATLAB R© wrappers were written to read the MERL binary files and

provide a convenient interface for analyzing these data. These wrappers were based

on code included with the MERL database[42]. Additionally, the code created for this

work performs trilinear interpolation between data points in the MERL binary file,

as well as object-oriented encapsulation, error checking, HDR integration routines,

and a MEX interface between MATLAB R© and C++.
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Figure 4. BRDF shape from MERL nickel file, scaled to HDRs of 0.1, 0.5, and 0.9,
plotted in two slices: (a) In-plane slice in θs for θi = 45◦ and ∆φ = 180◦; (b) Out-of-plane
slice in φs for θi = θs = 45◦ and φi = 0◦. The shaded region represents grazing angle
data, which is more prone to experimental error.

For this analysis, the MERL nickel material’s channel 0 (red channel) data was

used to provide the notional shape of a glossy BRDF at λ = 8µm. The BRDF was

scaled to a maximum HDR of 0.1, 0.5, or 0.9 to compare three different reflectances

to the Lambertian case while still ensuring conservation of energy for all Sun and

observer geometries. Unlike the Lambertian case, the reflectance (HDR) does vary

with θs (although it does not vary with φs since the material is assumed to be isotropic;

that is, azimuthally symmetric). The scaled BRDFs are plotted in Figure 4, and

resulting HDRs are plotted in Figure 5. Notice the HDR approaches 0 at steep angles

instead of approaching 1; this is due to the experimental error in the MERL database

at steep angles (as noted previously); in general, the HDR remains roughly constant

for angles where the data is more reliable, for this particular BRDF shape.

The magnitude of the specular peak of this BRDF does not appear to be unrealistic

for a notional material in the LWIR. It is not unusual for materials to contain relatively

large BRDF values (exceeding 100 sr−1). In fact, Harkiss showed that the peak value

of the BRDF of bare aluminum at λ = 10.6 µm ranges from 103 to 105 1/sr, depending

upon viewing geometry, while possessing an HDR of about 0.9[25]. Thus, the shape

of the densely-populated BRDF from the MERL database, although measured in
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Figure 5. MERL nickel scaled HDR for θi = 45◦, φi = 0 (for any φo). The shaded region
represents grazing angle data, which is more prone to experimental error.

red, green, and blue channels, is not an anomaly when used to represent a notional

material in the LWIR.

2.2 Basic Model Results

In the previous section, all components of a simple scene model at a single wave-

length were discussed. These equations, together with the MERL BRDF data, were

analyzed at λ = 8 µm in this section.

For the Lambertian cases (ρd = 0.1, 0.5, and 0.9), the results do not vary with ob-

servation angle since the Lambertian BRDF does not vary with observation angle. As

the reflectance varies, the relative importance of the emissive and diffuse downwelling

components varies (and thus both components should be kept in a LWIR model), but

the solar component is never more than a few percent of the total observed radiance.

Table 2.1. Ratio of Radiance Component to Total Radiance, assuming Lambertian
BRDF

ρd = 0.1 ρd = 0.5 ρd = 0.9
LS/Lp 0.0018 0.0128 0.0392
Le/Lp 0.9659 0.7588 0.2590
Ld/Lp 0.0323 0.2284 0.7017
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These results are summarized in Table 2.1. This observed behavior is in line with the

common assumption that solar reflection is unimportant in the LWIR.

When the previously discussed MERL BRDF model representing a notional glossy

BRDF with a reflectance of 0.1, 0.5, or 0.9 is analyzed using the same process, the

results are substantially different; the relative contribution of each component now

becomes dependent upon viewing geometry. These results are plotted in Figure 6.

Although for many observer geometries the solar reflection may be negligible, as one

approaches the specular lobe of a material, the solar reflection becomes non-negligible

even at λ = 8µm; in fact, the solar reflection may become the most significant

component of the observed total pupil plane radiance. This result challenges an

assumption that is made within some communities such as HSRS, where in the LWIR

band solar radiation is assumed to have negligible impact[19].

Another way to visualize these data is to pick a solar position and a threshold

value (such as 10%), and create a 3-D plot of all points within the hemisphere where

the solar reflection is at least 10% of the total observed radiance (that is, plot all

points on the hemisphere where LS/Lp > T , where T is a threshold value). For a

threshold of 10% with the MERL nickel BRDF scaled to an HDR of 0.9, the results are

plotted in Figure 7. As shown in that figure, there is a non-negligible portion of the

hemisphere where the solar specular reflection is at least 10% of the total pupil plane

radiance; however, this region does not constitute a majority of the hemispherical

region for this material. Thus, the effect of solar reflection is highly directionally

dependent. It may appear in a relatively significant fraction of the hemisphere, but it

is not a significant factor everywhere in the hemisphere. Thus, care should be taken

to identify when the Sun-object-sensor geometry has a significant influence on the

observed radiance.

It is also useful to visualize the effect on pupil plane radiance in an absolute sense,
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Figure 6. Ratios of self-emissive, solar, and diffuse downwelling radiances to total
observed pupil plane radiance, for θi = 45◦ and ∆φ = 180◦. The MERL nickel BRDF
shape was scaled to result in a maximum HDR of three different values: (a) 0.1, (b)
0.5, and (c) 0.9; all other parameters remained fixed between the three plots. The
shaded region represents grazing angle data, which is prone to experimental error.

Figure 7. Hemispherical view of the conical region where LS/Lp > 0.1 for a BRDF shape
of nickel with an HDR of 0.9. The solid blue line is the incident vector (θi = 45◦); the
dotted blue line represents specular reflection.
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not just with a threshold, in three dimensions. Since the pupil plane radiance changes

by orders of magnitude depending upon whether one is in or out of the specular lobe,

the data are more readable when presented in terms of brightness temperature. The

brightness temperature TB is simply the temperature that a blackbody would need to

be at if it were to emit the observed pupil plane radiance; that is, it is the blackbody

equation solved for temperature, for a given wavelength (8 µm in this case) and

radiance. The equation for brightness temperature is as follows:[19]

TB(Lp, λ) =
hc

kλ

[

ln

(

1 +
2hc2

Lpλ5

)]−1

, (5)

where k is Boltzmann’s constant, h is Planck’s constant, and c is the speed of light

in a vacuum.

Figures 8 and 9 are contour plots of the difference in brightness temperatures

between the MERL and Lambertian cases; i.e., TB(Lp,MERL)− TB(Lp,Lamb) at 8 µm.

In Figure 8, the maximum HDR is 0.9; in Figure 9, the maximum HDR is 0.5. The

incident angle θi is 30◦ in plots (a) and (b) in Figures 8 and 9; in (c) and (d), the

incident angle is 45◦. Each contour line represents a brightness temperature difference

of 1K in (a) and (c), and 10K in (b) and (d). In each case, significant differences in

brightness temperature are observed, representing substantial differences in observed

pupil plane radiance. The difference is more dramatic with a maximum HDR of 0.9

(Figure 8), as is to be expected; that case will be analyzed first. By comparing Figure

8(b) and (d), one can observe that as θi decreases, the specular lobe width increases

but its overall magnitude decreases; this is due to the projected area cos θi effect in

Equation (3) as well as the BRDF. The maximum brightness temperature difference

in Figure 8 is in excess of 120K for θi = 45◦. The difference in brightness tempera-

ture also is negative at some points, indicating the brightness temperature with the

Lambertian BRDF model exceeds the brightness temperature with the MERL BRDF
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Figure 8. Contour plot of the difference in brightness temperature between MERL
and Lambertian cases for an HDR of 0.9 and two incident angles: (a,b) θi = 30◦; (c,d)
θi = 45◦. Plots (b) and (d) zoom in on the specular lobe contours. In (a) and (c),
contours are in 1◦K steps; in (b) and (d), contours are in 10◦K steps. The plots extend
only to θi = 70◦ due to error in the BRDF data at grazing angles.

at some angles. Focusing now on Figure 9, it is clear that the general shape of the

brightness temperature difference has not changed, but the overall magnitude has

changed.

The results of this analysis are noteworthy. Although the Lambertian case agrees

with conventional wisdom, there is frequently an assumption in the community that

one can always neglect solar reflection in the LWIR, regardless of geometry; these

data do not validate that result if one is at or near the specular lobe of a material in

the scene, which is dependent upon not only the solar and sensor geometry but also

the object’s geometry in the scene. Such a result is unsurprising in the VNIR/SWIR,

but this finding shows that solar reflection, and thus object BRDF, may be important
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Figure 9. Contour plot of the difference in brightness temperature between MERL
and Lambertian cases for an HDR of 0.5 and two incident angles: (a,b) θi = 30◦; (c,d)
θi = 45◦. Plots (b) and (d) zoom in on the specular lobe contours. In (a) and (c),
contours are in 1◦K steps; in (b) and (d), contours are in 10◦K steps. The plots extend
only to θi = 70◦ due to error in the BRDF data at grazing angles.

even in the LWIR for certain applications. Furthermore, a highly reflective surface

(HDR = 0.9) may exhibit brightness temperature differences of 5K even off specular.

Finally, these results suggest a mechanism to identify whether solar radiation is a

factor. If brightness temperatures are significantly higher than the expected value

of an object in a scene, it may be possible that solar reflection off a glossy object is

partially responsible for the observed brightness temperature.

It is anticipated that, for constant HDR, a more specular BRDF would result in

brightness temperature differences that are higher in magnitude, but are localized to a

smaller area of the scene. Similarly, a less specular BRDFwould likely result in smaller

brightness temperature differences, but these differences would be less localized. On
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the other hand, as was observed in this analysis, variation in HDR for constant

BRDF shape would affect the magnitude of the brightness temperature differences.

Additionally, although the MERL data does not support a grazing angle analysis due

to difficulty in recording accurate experimental data at grazing angles for BRDF and

HDR, it is expected that the brightness temperature would differ significantly from

Lambertian at grazing angles due to the phenomenon that materials become more

reflective at very steep observed angles.

2.3 Spectral Model Results

In the previous section, the impacts of a BRDF based upon Sun-object-sensor

viewing geometry were analyzed for a single wavelength. In this section, a fixed Sun-

object-viewer geometry is chosen and a notional wavelength variation of the BRDF

is assigned; the results are then contrasted with the case of a Lambertian reflector

to determine whether there is a significant spectral difference, even when the overall

reflectance of a material is held constant with wavelength. The maximum HDR is

held constant at 0.9 for all results in this section. For an HDR of 0.5, or for a

different incident angle, the effects would change in magnitude and spatial extent in

an analogous manner to the variations observed in the previous section.

To gain an understanding of the potential for spectral BRDF to affect measure-

ments, it is necessary to obtain the BRDF variation with wavelength; such variation

is not well-documented in the literature in the LWIR. The reason for the relative lack

of spectral BRDF data in the LWIR is due to the difficulty in measuring BRDF due

to the presence of relatively little signal away from the specular peak of the BRDF.

Due to this scarcity of BRDF data at multiple wavelengths in the LWIR, the

MERL data was again used to provide the notional shape of a BRDF. MERL nickel

red channel data was mapped to λ = 12 µm, green channel data was mapped to λ = 10
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µm, and blue channel data was mapped to λ = 8 µm. This wavelength spacing is

approximately the same in ratio as the center of the red (≈650 nm), green (≈550 nm),

and blue (≈450 nm) wavelengths for a typical camera such as the one used to collect

the MERL data. Although such a mapping does not necessarily apply to nickel in the

LWIR, it is used to represent the notional BRDF of an unknown material; as noted

previously, the BRDF shape for nickel is not unrealistic for materials in the LWIR.

Nickel also has the advantage of not being transmissive. Thus, Nickel can be assumed

to be a surface reflector; all energy not reflected by the surface can be assumed to be

absorbed and thus in thermal equilibrium, emitted. Therefore, the model described

by Equations (2) and (3) can be applied.

As before, two different cases were analyzed: Lambertian and MERL BRDF. In

this experiment, the maximum HDR for each wavelength was set to 0.9. The results

were generated for θi = 45◦ and ∆φ = 180◦, with θs = 30◦ to 55◦ in 5◦ increments;

see Figure 10.

From these results, two key observations are noted. First, the overall magnitude

changes substantially when approaching specular reflection, consistent with the ob-

servation in the previous section. Second, and perhaps more importantly, the relative

difference in pupil plane radiance for each wavelength also changes significantly in

shape. Near the specular peak, the observed pupil plane radiance decreases with

wavelength (as in plots c, d, and e), whereas in the Lambertian approximation the

observed pupil plane radiance increases somewhat with wavelength. As the observer

departs from the specular lobe (as in plot a), the variation with wavelength more

closely resembles the Lambertian approximation. This effect of the BRDF on the

resulting pupil plane radiance underscores the potential importance of using a BRDF

model for areas where relative difference between wavelength data are important, as

is the case in HSRS.
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Figure 10. Total pupil plane radiance calculated assuming an object’s BRDF is of the
shape of nickel in the MERL database, scaled to an HDR of 0.9, as compared to the
Lambertian assumption with the same HDR. In all cases, the incident angle is 45◦. The
outgoing angle varies in each plot: (a) 30◦, (b) 35◦, (c) 40◦, (d) 45◦, (e) 50◦, and (f) 55◦.
The Lambertian (red dotted) line in each plot does not change in value, but the y axis
changes in scale. The shape of the wavelength variation, as well as the overall value,
changes when using BRDF data instead of the Lambertian approximation.
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2.4 Summary of Impact

In this chapter, a simple scene model was developed for pupil plane radiance.

This model included solar reflection in addition to self-emission and diffuse down-

welling radiance. Two different BRDF models were analyzed: Lambertian and MERL

nickel-shaped. These models were used to begin to understand the geometric and

wavelength-dependent impacts of BRDF on LWIR pupil plane radiance data.

First, the effects were analyzed with varying HDR and various viewing geometries.

For a single MERL BRDF, three different HDRs were considered: 0.1, 0.5, and 0.9.

Results validated neglecting solar reflection for a Lambertian material. However,

when a glossy material such as a notional BRDF shape based on data from the MERL

database was introduced in the same model, for certain angles, the solar reflection

became a significant factor even in the LWIR. For an HDR of 0.5 or 0.9, the result is

a significantly different brightness temperature in the specular region, with the width

of this region increasing with small θi or higher HDR. These results directly challenge

the notion that solar reflection is unimportant in the LWIR, which is often assumed

to simplify the processing of LWIR HSRS data [19].

Second, the effects were analyzed for a constant HDR of 0.9, with three different

channels of experimentally-measured MERL BRDF data mapped to 8 µm, 10 µm,

and 12 µm. These results showed differences in not just magnitude, but also shape,

as a function of wavelength and viewing geometry.

This chapter serves as motivation for why the BRDF could impact analysis in

domains such as HSRS. Although quantitative conclusions should not be drawn from

the MERL data due to its method of collection, this preliminary analysis qualita-

tively suggests it may be possible to improve upon the results of HSRS by replacing

the Lambertian model assumption with a spectral BRDF model. Since HSRS in a

realistic scene is already tasked with the difficult non-linear problem of accounting for
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atmospheric effects, a closed-form approximation to the BRDF with only a few pa-

rameters is highly desirable. Additionally, since HSRS is typically utilized to identify

a material in the scene based on the variation in the material’s index of refraction as a

function of wavelength, the closed-form BRDF model approximation should account

for other potential wavelength effects. Chapter III begins to address this problem in

more detail by providing thorough background on existing BRDF theory.
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III. BRDF Theory Background

In this chapter, BRDF theory for the microfacet model is developed, starting from

basic electromagnetism theory, then assuming geometric optics and using statistics

to develop the basic models. Then, polarimetric BRDF models are briefly discussed.

Some issues with microfacet BRDF models that motivate closer investigation into a

closed-form approximation for the BRDF are presented. Finally, scalar wave optics

BRDF models, which are significantly more complex than microfacet models, are also

be introduced.

3.1 Electromagnetism

One of the greatest successes of theoretical physics was demonstrating light be-

haves as an electromagnetic wave; thus, Maxwell’s Equations directly apply to prop-

agation of light and interactions of light with a surface. Maxwell’s equations with the

constitutive relations specify the electric and magnetic field, and are as follows:[34]

∇ · ~D = ρf ∇× ~E+
∂~B

∂t
= 0

∇ · ~B = 0 ∇× ~H = ~J+
∂ ~D

∂t
~D = ε~E ~B = µ~H

(6)

In the above expression, ~D is the macroscopic (displacement) electric field, ~E is

the microscopic electric field, ~B is the microscopic magnetic field, ~H is the macro-

scopic magnetic field, ~J is the free current density, and ρf is the free charge density.

When describing propagation through a material in SI units, a permittivity ε and

a permeability µ are used as material parameters; for isotropic materials, these are

scalar values. If one assumes plane wave solutions of the form exp(−iωt), then by

Fourier series superposition, the Helmholtz wave equation results:[34]
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(∇2 + µǫω2)~E = 0 (7)

From the Helmholtz equation, it is possible to define the wave vector ~k, with

direction n̂ and magnitude k = ω
√
µε. The speed of light through the material is

then given by v = ω/k. For free space (vacuum) propagation, the result is the speed

of light c; for general media, the speed is no larger than c. The general expression

for the electric field strength for free space propagation, up to an overall phase factor

which is generally not noticeable at optical frequencies, is as follows:[34]

~E(~r, t) = ~E0e
−i(~k·~r−ωt) (8)

Note that electromagnetism conventionally assumes that the user takes the real part

when associating a complex quantity with a field, as in the equation above. As-

suming isotropic media, Maxwell’s Equations directly show light propagates in one

direction, with the electric field ~E perpendicular to that direction of propagation

and the magnetic field perpendicular to both the direction of propagation and the ~E

field. ~E0 represents the magnitude and direction of the electric field, known as the

polarization, discussed in more depth shortly.

One common way to describe material parameters is by relating the parameters

µ and ε to the free space parameters µ0 and ε0:[34]

n =

√

µε

µ0ε0
(9)

For free space, it is clear that n = 1; for the large class of non-magnetic materials,

µ ≈ µ0 and n relates the permittivity of the material to the permittivity of free

space. When considering an absorptive medium, it is possible to add an imaginary

component to the permittivity ε (which results in exponential decay in the material);
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the complex index of refraction is still of the same form but now has a real part n

and imaginary part κ; κ is non-negative and is 0 for wavelengths without absorption.

The complex index of refraction is thus ñ = n+ iκ. At optical frequencies, since most

materials are non-magnetic, materials are frequently described by this complex index

of refraction rather than by the permittivity of free space directly.

This research is primarily concerned with the interaction of light (and thus the

interaction of electromagnetic waves) where one boundary can be approximated as

free space (i.e., air or vacuum, ñ ≈ 1) and the other boundary is an isotropic material.

Prior to discussing this interaction, however, it is necessary to resolve an ambiguity

in the electric field direction; this is described by the polarization state of light.

Polarization.

~E is restricted by Maxwell’s equations to be perpendicular to the direction of

propagation for isotropic materials, but there is an ambiguity still present in the

direction of ~E, which is confined to a plane but is not unique; this effect is described

by the polarization state, introduced in Equation (8) by ~E0. (Alternatively, one

could claim the ambiguity is in the magnetic field’s direction, but conventionally the

polarization state describes the direction of the ~E field.)

In general, the polarization of the electric field is confined by Maxwell’s equations

to be elliptical[34]. To describe this elliptical distribution of the electric field, it is

typically decomposed into one of two popular bases: linear or circular. To simplify

notation, this section assumes the direction of propagation is ẑ.

A linear coordinate system describes the electric field as being oriented in either

the x̂1 direction (one coordinate axis) or the x̂2 direction (the other coordinate axis).

This linear coordinate system picks two vectors spanning the x-y space (i.e., the

space not in the direction of propagation). A common choice is to choose the x̂
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and ŷ directions, although other choices are possible (in fact, the Stokes vector to

be discussed later uses the x-y coordinate system along with the ±45◦ coordinate

system). These coordinate systems are typically chosen to be orthonormal. Assuming

the x̂-ŷ coordinate system is chosen, this coordinate system is described by defining

~E0 from Equation (8) as [34]

~E0 = Exe
iδx x̂± iEye

iδy ŷ (10)

If δx = δy (i.e., the waves have the same relative phase), the wave is linearly polarized,

with magnitude E0 =
√

E2
x + E2

y . If the phase is different, then in general elliptical

polarization occurs.

A special case occurs if Ex = Ey and δx − δy = ±π/2. In this case, one can define

new coordinate system ǫ̂+ and ǫ̂− as [34]

ǫ̂± =
1√
2
(ǫ̂+ ± iǫ̂−) (11)

This forms an alternate orthonormal coordinate system known as circular coordinates,

with ~E0 from Equation (8) defined as [34]

~E0 = E+e
iδ+ ê+ + E−e

iδ− ê− (12)

The Stokes vector ~s is a convenient descriptor of the polarization state of an

electromagnetic wave using all of the coordinate systems described above. This is a

4-component vector defined as follows:[34]
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~s =



















s0

s1

s2

s3



















=



















E2
x + E2

y

E2
x − E2

y

2ExEy cos(δy − δx)

2ExEy sin(δy − δx)



















=



















E2
+ + E2

−

2E+E− cos(δ− − δ+)

2E+E− sin(δ− − δ+)

E2
+ − E2

−



















(13)

From this equation, it is clear
√
s0 indicates the intensity of the total field. In

polarization analysis, frequently this term is factored out to produce a normalized

Stokes vector with s0 = 1. (This normalization is not the same definition as mathe-

matically normalizing a vector, but rather it is an intensity normalization particular

to the Stokes vector.) The s1 term indicates the predominance of horizontal polariza-

tion to vertical polarization. If s1 is positive, the polarization is more horizontal than

vertical; if negative, the polarization is more vertical than horizontal; if zero, there

are equal parts horizontal and vertical polarization. If a normalized Stokes vector has

s1 = ±1, the light is completely polarized horizontally (for +1) or vertically (for −1).

The s2 term does not have an obvious expression from the above bases, but it shows

the predominance of 45◦ linear polarization to −45◦ linear polarization, as can be seen

by putting the equation for ~E0 in the ±45◦ coordinate system. The s3 term is easiest

to understand in the circular coordinate system, representing the predominance of

right hand circular polarization (E+) to left hand circular polarization (E−).[34, 59]

The Stokes vector is a 4-component vector depending upon only three quantities

(Ex, Ey, and δy−δx). For fully polarized light, an additional constraint on the Stokes

vector is that [59]

s20 = s21 + s22 + s23 (14)

In general, the Stokes vector can describe partially polarized light, so s20 is only

required to be greater than or equal to the sum of the other components (i.e., s20 ≥
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s21 + s22 + s23). In fact, if the light is completely unpolarized, the normalized Stokes

vector is ~su = [1, 0, 0, 0]T . This leads to one of the primary advantages of using the

Stokes vector characterization–the Stokes vector provides a metric for the Degree of

Polarization (DoP ): [59]

DoP =

√

s21 + s22 + s23
s0

≤ 1 (15)

If DoP = 1, the light is fully polarized; if DoP = 0, the light is fully unpolarized.

The DoP can never be negative since s0 is never negative.

Frequently in nature, materials are found to not circularly polarize light (which

passive 3-D TVs take advantage of to display two different images from the same

screen); thus, another metric commonly used in remote sensing is the Degree of

Linear Polarization (DoLP ), which drops the s3 component from the calculation:[59]

DoLP =

√

s21 + s22
s0

≤ 1 (16)

Again, DoLP = 1 represents fully linearly polarized light and DoLP = 0 represents

light which is not at all linearly polarized. A caution is in order, though: light which

is not linearly polarized can still be circularly polarized if s3 6= 0; this metric indicates

only the degree of linear polarization, not the degree of total polarization. For natural

scenes, the DoP and DoLP are approximately equal, but this is not the case for some

man-made materials[59].

The Mueller matrix is a 4x4 matrix representing the transformation of a Stokes

vector through an optical component (such as a polarizer). This matrix is often

normalized so there is some overall constant transmission term multiplying the entire

matrix, and the upper left entry is thus set to 1 (as it relates total incident intensity to

total scattered intensity). To determine the resulting Stokes vector given an incident
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Stokes vector and a Mueller matrix, simply perform a matrix-vector multiplication:

~sout =
↔

M~sinc. As an example of a Mueller matrix, consider an ideal horizontal

polarizer:[59]

↔

Mh =
1

2



















1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



















(17)

If the incident light is completely horizontally polarized (i.e., if ~sinc = s0[1, 1, 0, 0]
T ),

there is no change in the resulting vector; otherwise, the incident light is attenuated

and result in ~sout = fs0[1, 1, 0, 0]
T , where f is a fraction less than 1 depending upon

how horizontally polarized the incident light was. If the light is vertically polarized

(~sinc = s0[1,−1, 0, 0]T ), the result is ~0. A non-ideal horizontal polarizer may have

some overall scaling factor less than 1 multiplying
↔

Mh, or may have matrix entries

slightly different from the above form, depending upon whether the non-ideal behavior

was due to overall attenuation or due to incomplete polarization of the light.

Occasionally, the Stokes vector is expressed as a 3-component vector (assuming

s3 ≈ 0), and measurement of the Stokes vector for natural scenes is frequently imple-

mented as only a 3-component measurement. Also, Mueller matrices may sometimes

be expressed as 3x3 matrices instead of 4x4 matrices for this reason [59].

3.2 Surface Reflection and Fresnel Equations

Now that polarization states have been described in detail, electromagnetic re-

flection can be described. Consider light incident upon a surface; assume the surface

normal is pointing in the ẑ direction. The plane of incidence is defined as the plane

containing both the point of intersection and the direction of propagation, which is
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no longer constrained to be in the ẑ direction, but the coordinate system is chosen

such that the direction of propagation lies in the x̂− ẑ plane. In this orientation, the

electric field can oscillate in one of two directions: Exz, which is called in-plane (or

parallel) oscillation and is frequently called p polarization (German: parallel), or Ey,

which is called out-of-plane (or perpendicular) oscillation and is frequently called s

polarization (German: senkrecht).

Three rays of light exist at a material boundary: incident (i), reflected (r), and

transmitted (t). From Maxwell’s equations, boundary conditions for conservation of

momentum can be used to relate these three waves: the tangential components of ~E

and ~H are continuous, and the normal components of ~B and ~D are continuous.

From these boundary conditions, three well-known results can be derived: the

law of reflection, Snell’s Law and the Fresnel equations[34]. The law of specular

reflection states θr = θi and φr = φi + π, or in other words, angle of incidence equals

angle of reflection. (The additive π factor arises from spherical coordinates used

in this chapter, as the beam is traveling in the opposite direction but at the same

angle θ relative to the surface normal.) This result does not depend upon incident

polarization state. Snell’s Law also does not depend upon incident polarization state,

and is expressed as follows (recall this dissertation assumes ni ≈ 1):

sin θi = n sin θt (18)

When reflecting off a surface, the boundary conditions produce an inherent polar-

ization effect even if the incident light is unpolarized. This effect differs depending

on angle of incidence relative to the surface normal (ẑ), and based on whether the

incident polarization of the electric field is in the plane of incidence (p polarization)

or perpendicular to the plane of incidence (s polarization). The Fresnel equations for

reflection quantify this effect; again assuming propagation through air can be approx-
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imated as a vacuum (ñi = nair ≈ 1), these equations are dependent on only incident

angle with respect to surface normal and the reflecting material’s complex index of

refraction ñ as follows:[34, 59]

rp(θ) =
ñ cos θ −

√

1− ( sin θ
ñ
)2

ñ cos θ +
√

1− ( sin θ
ñ
)2

(19)

rs(θ) =
cos θ −

√

ñ2 − sin2 θ

cos θ +
√

ñ2 − sin2 θ
(20)

The rp and rs components are reflection of the electric field, not intensity. The

intensity of each component is the magnitude squared of each field reflection:

Fp(θ) = |rp(θ)|2

Fs(θ) = |rs(θ)|2
(21)

If the incident light is unpolarized, these amplitudes are combined as follows:

F (θ) =
Fp(θ) + Fs(θ)

2
(22)

3.3 Self-Emission

An important factor related to reflection is a material’s self-emission ε. By con-

servation of energy, the relationship α+ τ +ρ = 1 must hold; that is, all of the energy

must be absorbed (α), transmitted (τ), or reflected (ρ). Kirchhoff’s Law states that

the self-emission ε must be equal to absorption α to maintain thermal equilibrium;

that is, in thermal equilibrium, the amount of energy absorbed must be equal to the

amount of energy emitted. If a material is opaque, τ = 0 and the following result is

obtained: ε = 1− ρ. In general, as is observed in Section 3.4, this reflectance can be

directional; thus, the emissivity can also be directional.
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Although Kirchhoff’s Law states emitted and absorbed energy is equal, materials

do not necessarily absorb and radiate at the same wavelength. Some materials can

be approximated as blackbodies in their radiation profile; this wavelength distribu-

tion depends on temperature of the object and is given by Planck’s Law, originally

proposed by Max Planck in 1900 as derived from quantum theory. Its form in terms

of spectral radiance is as follows:[50]

LB(λ, T ) =
2hc2

λ5
1

ehc/λkT − 1
(23)

where h is Planck’s constant, k is Boltzmann’s constant, c is the speed of light in a

vacuum, T represents the temperature of the radiating body, and as before λ repre-

sents wavelength. Many materials are well-approximated as a graybody over a small

region of interest in the electromagnetic spectrum. For a graybody, the shape of the

blackbody radiation curve is the same but the overall emission is multiplied by a

constant emissivity ǫg, which is between 0 and 1.

Polarimetric Self-Emission.

When incorporating polarimetric effects of the BRDF in self-emission, some mod-

ification is required to obtain the Stokes vector representation. Recall the Stokes

vector is a 4-element vector. The magnitude information is represented by the first

entry (s0) in the Stokes vector, and the other entries represent relative contributions

of the difference of the polarization state in different coordinate systems. For this

reason, the polarimetric extension is not as simple as taking 1 − ρ, since ρ is a 4x4

Mueller matrix when including polarimetric effects.

Blackbody radiation is unpolarized, meaning its representation in Stokes vector

notation is [1, 0, 0, 0]T . Taking the dot product of this unpolarized Stokes vector

extracts the first column of the BRDF only. As shown by Resnick et al., the emissivity
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of the surface is given as follows:[55]

~ε =



















1− ρ00(ω̂s)

−ρ10(ω̂s)

−ρ20(ω̂s)

−ρ30(ω̂s)



















= ~sB − ↔
ρ(ω̂s)~sB (24)

where ~sB is the normalized Stokes vector for a blackbody (which is unpolarized radia-

tion: ~sB = [1, 0, 0, 0]T ). In the above equation, ρxy(ω̂s) represents the Mueller matrix

for the HDR, given by the integral expression in Equation (28) with the indexed

pBRDF element in place of the scalar BRDF. Since blackbody radiation is unpolar-

ized, only the first column of the BRDF is required to obtain the self-emission term

(00, 10, 20, or 30). Mathematically, this represents light which is scaled to the correct

total emissivity, but is of opposite polarization. That is, if incident unpolarized light

at an angle θi is completely horizontally polarized upon reflection (s1 = 1), then the

self-emitted light at that angle θi is completely vertically polarized (s1 = −1). The

overall magnitude of the self-emitted light is the same, as s0 = 1− ρ00(ω̂s) = ρ(ω̂s).

(Recall the 00 entry of any Mueller matrix is the same as the unpolarized result.)

3.4 Reflectance Functions

Solving Maxwell’s equations for realistic surfaces is a very time-consuming process

requiring knowledge of several material parameters, which can become unwieldy in

remote sensing or scene generation. For this reason, simplified approximations of

the result for typical materials have been developed. The BRDF was defined by

Nicodemus et al. in a NIST standard as [48]

fr(ω̂i, ω̂s, λ) =
dLs(ω̂i, ω̂s, λ)

dEi(ω̂i, λ)
(25)
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Since the BRDF relates incident irradiance Ei to scattered radiance Ls, it carries units

of sr−1. Its range is on the interval [0,∞), although with additional constraints to

be discussed shortly. Initially, wavelength dependence (λ) is neglected in the BRDF

model discussion; this wavelength dependence is revisited after the BRDF for fixed

wavelength is examined in detail. The term “scattered” vector is preferred by the

author to the term “reflected” vector here. The term “reflected” is not used here for

two reasons. First, due to surface roughness, the angle of incidence θi is not required

to equal the scattered angle θs relative to the macrosurface normal. Additionally, the

scattered radiation may consist of more than just reflected radiation, as volumetric

scattering may also exist.

Throughout this dissertation, ω̂i represents the normalized incident vector rela-

tive to the overall surface normal and ω̂s represents the normalized scattered vector

relative to the surface normal (see Figure 2). In both cases, the unit vector ω̂ is

defined as a unit vector in spherical coordinates, with the origin set at the point of

intersection with the surface and the ẑ direction is defined by the surface normal; this

results in a normalized spherical coordinate vector as follows:

ω̂ =













1

θ

φ













(26)

Due to Helmholtz reciprocity of Maxwell’s Equations, the BRDF of a material

should obey the following property:

fr(ω̂i, ω̂s) = fr(ω̂s, ω̂i) (27)

To be physically accurate, the BRDF of a material also must obey conservation of

energy; that is, for any incident solid angle ω̂i, the integrated BRDF over all scattered
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solid anges ω̂s must be in the range [0, 1]. This integrated BRDF is known as the

Directional-Hemispherical Reflectance (DHR), which is unitless and is calculated as

follows:

ρ(ω̂i) =

∫

Ω/2

fr(ω̂i, ω̂s) dω̂s =

∫ 2π

0

∫ π/2

0

fr(ω̂i, ω̂s) cos θs sin θs dθs dφs (28)

The expansion of dω̂s includes a sin θs term from standard spherical coordinate inte-

gration over θs and φs. The extra cos θs arises from the projected area effect of the

integration; that is, at an angle other than nadir (θs = 0), the same total energy in

the reflection is spread over a larger area, resulting in less energy per unit area.

Similarly, for any scattered solid angle ω̂s, the integrated BRDF over all incident

solid angles ω̂i must also be in the range [0, 1]. This is known as the Hemispherical-

Directional Reflectance (HDR), which is also unitless and equal to the DHR:

ρhdr(ω̂s) =

∫ 2π

0

∫ π/2

0

fr(ω̂i, ω̂s) cos θi sin θi dθi dφi = ρ(ω̂s) (29)

Although HDR and DHR are the same value for each solid angle, there is a subtle

difference–the DHR is a function of incident angle and the HDR is a function of

scattered angle. Despite this difference, frequently HDR and DHR are used inter-

changeably in literature.

These conditions are true for actual material BRDFs; however, these conditions

are not guaranteed to apply for all BRDF models that are discussed in this document.

Many BRDF models were developed by the computer graphics community for effi-

cient scene rendering, where radiometric accuracy can be sacrificed to some extent in

exchange for a faster algorithm as long as the result still looks reasonably close. Ad-

ditionally, a BRDF function may at times be nearly symmetric and conserve energy
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for careful choices of the model parameters, but may not guarantee symmetry or con-

servation of energy if the user chooses parameters that do not make sense. Therefore,

care must be taken when using BRDF models to ensure these conditions are still met

after fitting parameters to a particular model. Finally, some BRDF models approach

∞ as θi or θs approaches 90◦; when that is the case, that value is not allowed in a

model, as there is no surface reflection at θ = 90◦ anyway.

3.5 BRDF Model Basics

BRDF models are an area of active research, as popular BRDF models in use

by both the physics and computer graphics communities are known to have some

materials for which they are well suited, while there are other materials for which

the models fail; see, for example, a study by Ngan in 2005 on 100 materials with

densely-measured BRDF data[47].

For a perfectly specular BRDF, there is a single parameter ρ (total reflectance).

Its representation in spherical coordinates uses the Dirac delta function and is as

follows:

fr(ω̂i, ω̂s) = ρδ(θi − θs)δ(φi + π − φs) (30)

In words, this BRDF function quantifies the common knowledge statement that

angle of incidence equals angle of reflection. If a surface were perfectly flat, the BRDF

would be perfectly specular, having this form. Its value is 0 everywhere except at the

mirrored angle of incidence, where its value is infinite, with its DHR equal to ρ.

Another simple idealized BRDF model is the Lambertian BRDF, which assumes

constant reflectance in all directions regardless of incident or scattered angle. It is

parameterized by a single variable, ρ, representing the total reflectance. This BRDF

would be notionally valid for a very rough surface, or for a highly volumetric scatterer.
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(That said, there is no NIST standard for a nearly-Lambertian surface in the IR; no

material is truly Lambertian in the IR, although it can be a decent approximation

for some materials.) The Lambertian BRDF is defined as

fr =
ρ

π
(31)

These idealized BRDF models do not describe most materials. There are two pri-

mary classes of physics-based BRDF models that are examined in this work: micro-

facet models and scalar wave optics models. Polarimetric (vector) wave optics models

are not discussed in this dissertation. Polarimetric microfacet BRDF models are de-

scribed briefly in this chapter since the concept is of some importance to the discussion

in Chapter IV, but it is not a focus of this dissertation. Microfacet BRDF models

assume geometric optics and result in a simple, closed-form model to the BRDF, and

are more commonly applied to domains that are already resource-constrained. (For

example, in HSRS, atmospheric correction requires significant computational effort

already [19], so limited computational resources are available to compute the BRDF.)

Scalar wave optics models are significantly more cumbersome to use and do not gener-

ally possess a simple closed-form model for all angles or all surfaces. These models are

typically used for predicting actual surface parameters from the BRDF, rather than

for simply estimating the reflectance profile. This is due to the significant additional

computational complexity when using a scalar wave optics approach to the BRDF.

This section of the background deals primarily with common microfacet BRDF

models, as the microfacet model is more appealing to apply to HSRS due to its

relative ease of use. In fact, the initial approach in this dissertation was to measure

the BRDF of materials as a function of wavelength, then determine a modification

to the microfacet model to account for the wavelength dependence. However, as is

shown in Chapter V, this method was found to not work when fitting to measured
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BRDF data. A more detailed examination of the relationship between microfacet

and scalar wave optics BRDFs are then developed in Chapter VI. Therefore, after

presenting microfacet BRDF models, common scalar wave optics BRDF models are

presented at the end of this chapter.

Other classes of BRDF models exist, but are primarily of interest in computer

graphics, as they are not derived from physical or geometric optics. For a good

overview of other popular BRDF models, see [45, 17]. According to Montes, there

are three main classes of BRDF models: empirical, theoretical, and experimental[45,

17]. Empirical BRDFs are primarily of use to the Computer Graphics community,

and are largely not be discussed in this dissertation (except a brief mention of the

popular Phong and Blinn-Phong models). Experimental BRDFs are functions based

on theoretical BRDFs, but tweaked somewhat to better fit a certain category of

BRDF data; they are not applicable to a wide range of models, however, and the

tweaks are typically not physically driven, so this class is also not be discussed in-

depth. Theoretical BRDFs are of most interest in this dissertation, as these models

have a physical basis from which they are derived. The largest group of theoretical

models are microfacet models that neglect diffraction and interference.

In any BRDF model, reflection off a material can come from two different sources:

surface reflection and volumetric scatter. In the literature, volumetric scatter is some-

times called diffuse reflection, since it tends to be less directional. In this dissertation,

diffuse is reserved to be synonymous with Lambertian. In general, the volumetric

BRDF contribution may be directional, or it may be diffuse, so some models include

up to three distinct terms, with the volumetric component split into a perfectly diffuse

portion and a directional volumetric portion. Mathematically, the form of a BRDF

is[5]
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fr(ω̂i, ω̂s) = ρsS(ω̂i, ω̂s) +
[

ρvV (ω̂i, ω̂s) +
ρd
π

]

(32)

Here, S is the surface reflection, V is the directional volumetric scatter, and ρd/π is the

diffuse volumetric scatter; ρs, ρv, and ρd are fitting parameters. Since setting θ = 0 as

the macrosurface normal direction for an isotropic material results in an ambiguity in

φ, there is added flexibility in definition of a reference point for the azimuthal angle φ

for isotropic materials. One convention, which is adopted throughout this document,

is to set φi = 0. Microfacet models are the primary type of BRDF model that are

considered in this research, and are discussed in greater detail shortly. First, it is

helpful to discuss a different coordinate system that is of use in describing microfacet

BRDFs.

Coordinate Variables for Reflection.

When dealing with the microfacet model for the BRDF, it is convenient to work in

both the macrosurface coordinate system discussed above, as well as a microsurface

coordinate system. Although the relationships between the microsurface and macro-

surface have been in use for decades, this coordinate system was formally defined by

Rusinkiewicz[56] in 1998, defining a half vector ω̂h and difference vector ω̂d as

ω̂h =
ω̂i + ω̂s

||ω̂i + ω̂s||
, ω̂d = Ry(−θh)Rz(−φh)ω̂i. (33)

In the above equation, Ra(β) is a right-handed rotation about axis a by an angle

β. The difference vector is thus obtained by derotating the incident vector in the φ

direction, then derotating the difference vector in the θ direction.

Physically, the half vector ω̂h can be interpreted as the microfacet orientation

which produces specular reflection for a given incident and scattered direction. In
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Figure 11. Microfacet geometry, with incident and outgoing vectors relative to ẑ (overall
macro-surface normal), ω̂h (specular microsurface orientation), and ω̂d (rotated incident
vector in this microsurface orientation)

other words, the variable θh represents the angular difference between the macro-

surface normal and the microsurface normal for specular reflection. In Rusinkiewicz

coordinates, the isotropic condition results in symmetry about φh. The difference vec-

tor ω̂d is the incident vector, rotated to be in the microfacet’s coordinate system[56].

This becomes important when calculating Fresnel reflectance, which is dependent

upon the angle of incidence relative to the microsurface normal, θd; see Figure 11.

In addition to the above formal definitions, if the φh and φd variables are not

needed (which is frequently the case in isotropic, unpolarized, microfacet BRDF mod-

els), the angular dependence may be calculated using the well-known equations found

in many microfacet BRDF papers: [19, 33, 43, 52, 53, 57, 65, 70]

θd =
1

2
cos−1 [cos θi cos θs + sin θi sin θs cos(φi − φs)] (34)

θh = cos−1

[

cos θi + cos θs
2 cos θd

]

(35)

For most BRDF models, it is convenient to work in both Rusinkiewicz coordi-

nates and macrosurface coordinates. Terms depending on microsurface orientation
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(such as Fresnel reflection and microfacet distribution) are most naturally expressed

in Rusinkiewicz coordinates, while other terms such as geometric attenuation or vol-

umetric reflection are more naturally expressed in macrosurface coordinates.

3.6 Microfacet BRDF Models

In [5], many popular microfacet BRDF models were written in a common form and

summarized, as well as showing the potential to enhance BRDF fitting by altering

the distribution function of a microfacet BRDF model. This section discusses the

BRDF models presented in [5] in more depth, as well as expanding the discussion to

polarimetric BRDFs. The potential BRDF fitting enhancement presented in [5] are

discussed in Chapter V, when BRDF fitting is addressed.

One of the most popular classes of BRDF models is the microfacet model. In a

microfacet model, wave optics is ignored, and thus all terms are additive and non-

negative. It is assumed that surface reflection is due only to specular reflection of

microfacets oriented in the specular direction relative to the source and observer

(i.e., the ω̂h direction). The microfacet model assumption does not specify any de-

tail about the form of the volumetric reflection, but it does specify the form for the

surface reflection S, as follows:

S(ω̂i, ω̂s) = D(ω̂h)F (ω̂d)G(ω̂i, ω̂s)σ(θi, θs) (36)

The function D represents the microsurface normal distribution. If one assumes

the microsurface normals are uniformly distributed about the macrosurface normal

ẑ (e.g., it is isotropic), the distribution is dependent only on θh. (For an anisotropic

surface, there may additionally be a φh dependence.) As discussed by Trowbridge,

the facet distribution function (excluding normalization) for isotropic surfaces should

obey the following properties for θh ∈ [0, π/2]: finite, nonnegative, single-valued,
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and continuous [66]. When properly normalized, the facet distribution should also

integrate to 1 over the hemisphere.

The function F was previously defined in Equation (22) and represents Fresnel

reflection with unpolarized incident light, which is parameterized by the complex in-

dex of refraction ñ = n+ iκ. It is dependent only on ω̂d in Rusinkiewicz coordinates,

since ω̂d is the incident vector in the specular microsurface’s orientation. In fact,

since Fresnel reflection is dependent only upon depression angle with respect to the

microsurface normal ω̂h, this function depends only upon θd. The function G rep-

resents the geometric attenuation term, also known as shadowing and obscuration,

which may in general depend upon any of the angles.

As pointed out by multiple authors[16, 21, 33, 53], when converting from scattering

cross section to BRDF, there is a conversion term denoted here as σ and defined as

σ(θi, θs) =
1

4 cos θi cos θs
. (37)

The 1/ cos θs comes from what is known in the community as the cosine corrected

BRDF [62]. The remaining cos θi term arises from scattering cross section typically

being defined for spherical scattering particles rather than flat surfaces, for which the

projected area must be considered. Physically, considering Huygens wavelet theory,

all points on the wavefront are emitting spherical waves effectively from point sources

which have no area. Microfacet models compute BRDF as intensity per incident

flux for a spherical wave, then converts to BRDF for a flat surface via σ. The cross

section conversion term is not in units of area because the BRDF models only angular

dependencies, but the angular terms in the conversion from a spherical scattering

surface to a flat scattering surface are present in this cross section conversion term.

In some references, it is asserted there should also be a 1/ cos θh term present[33,

71], but Shell and Hyde both state it is a negligible factor[61, 33]. In this work, the
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1/ cos θh term is included as part of the distribution function normalization instead

of part of σ.

When combined with Equation (32) and restricted to isotropic surfaces, microfacet

BRDFs may be expressed as [5]

fr(ω̂i, ω̂s) = ρsPσ(θi, θs)D(θh)F (θd)G(ω̂i, ω̂s) + ρvV (ω̂i, ω̂s) +
ρd
π

(38)

The additional term P (ω̂i, ω̂s) is called a pre-factor term; it represents terms that

exist in microfacet BRDF models that are specific to one particular model, and are

not found in other microfacet BRDF models.

Fresnel Approximations.

The Fresnel equations discussed previously are fairly complex for some applica-

tions, and require two parameters (n and κ). Some BRDF models use a Fresnel

approximation instead of using Equation (22). A common approximation to the un-

polarized Fresnel curve is given by Schlick and has the following form, with a single

real parameter R0:[58]

FSch(θd) = R0 + (1− R0)(1− cos θd)
5 (39)

This parameterization is common in the computer graphics community due to its

speed, simplicity, and having one fewer parameter. It is less useful for this physics-

based research since it does not easily generalize to the polarimetric BRDFs to be

discussed later. Thus, it is not used in any of the BRDF models presented in this

dissertation, although it could be substituted in place of the more complex Fresnel

equation if appropriate for a certain application.

Another Fresnel approximation is used in the Sandford-Robertson BRDF model,
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which is a single parameter approximation given as[57, 13, 35]

F (θ) ≈ Fs(θ) = [gs(θ)]

[

1

Gs

]

=

[

1

1 + b2 tan2 θ

] [

(1− b)2(1 + b)

1− b2 + 2b2 ln b

] (40)

In the above equation, the first term in brackets is gs(θ) and the second term in

brackets (which is independent of θ but still depends upon the Sandford-Robertson

parameter b) is 1/Gs, the normalization term for gs(θ).

Distribution Functions.

Distribution functions can be broken into two categories: isotropic and anisotropic.

For isotropic functions, the distribution function depends only on θh; anisotropic

distribution functions additionally depend on φh. Trowbridge states requirements on

a facet normal distribution that require it to be integrable and non-negative[66]. If

the facet normal distribution is thought of as a probability distribution function, the

integral over the entire hemisphere of a properly normalized distribution function is

1; this normalization has been used where possible. Recall in Section 3.6, it was

noted that Hyde and Shell indicated the correct normalization of a microfacet BRDF

includes a 1/ cos θh term as well as the σ term[33, 61]. I have chosen to include that

term in these distribution functions, so in some cases where the term was not already

included, my normalization has an extra power of 1/ cos θh. In this dissertation, unless

otherwise noted, the following equation holds (if fit parameters are assumed positive):

∫ 2π

0

∫ π/2

0

D(θh) cos θh sin θh dθh dφh = 1 (41)

The cosine lobe distribution is parameterized by k; its form is as follows:[51, 3, 1]
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Dc(θh) =
k + 2

2π
(cos θh)

k (42)

The Beckmann distribution is a Gaussian distribution used by many microfacet

models. Its origin is in a study on electromagnetic reflection performed in 1963. The

Beckmann distribution is parameterized by a single variable m and has the following

form:[2, 14]

Db(θh) =
1

πm2 cos4 θh
exp

[

−
(

tan θh
m

)2
]

(43)

In some BRDF models, such as Torrance-Sparrow[65, 59, 45] and Ward-Duer[70,

18], an approximation to the Beckmann distribution is used for small θh, as follows:

tan θh ≈ θh. In the case of Ward-Duer, the normalization is also approximated as 1;

this is accounted for in the pre-factor section.

A slightly modified form of the Beckmann distribution is used by Priest [53]. His

Gaussian distribution is equivalent to setting m = σg
√
2 in the Beckmann distribu-

tion. For this reason, the summary table presented later in Table 3.1 still refers to

this distribution function as Db(θh). Its form is as follows:

Dg(θh) =
1

2πσ2
g cos

4 θh
exp

[

−tan2 θh
2σ2

g

]

(44)

Wellems presents a two-parameter Hyper-Cauchy distribution that introduces an

extra parameter q to the Cauchy distribution. When q = 3/2 in this Hyper-Cauchy

function, the Cauchy distribution results. The other parameter, s, controls the

width of the distribution function. This Hyper-Cauchy distribution has the following

form:[71]

Dh(θh) =
(q − 1)(s

√
2)2q−2

π(cos4 θh)((s
√
2)2 + tan2 θh)q

(45)
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The Modified Beard-Maxwell BRDF is perhaps the most popular BRDF that

sometimes uses a single-parameter Cauchy distribution, although the form used is

slightly different from the Hyper-Cauchy distribution. Note that this distribution

function is not normalized over the hemisphere as the previous distribution functions

were, so a subscript u has been added. This modified Cauchy distribution is as

follows:[19, 22, 61]

Dbm,u(θh) =
B

(cos θh)(s2 + tan2 θh)
(46)

In the original Beard-Maxwell formulation, this distribution was not used directly,

but was estimated from measured bi-static data[16, 43]; this is still used sometimes

in place of the Cauchy distribution function (such as in the popular NEF database).

Instead of using a parameterized Cauchy distribution function, the BRDF value is

measured for each half-vector orientation θh from 0◦ to 90◦, at θd = 0. This is termed

the bi-static scan in the literature. The empirically-driven distribution function ρfs

is then scaled as follows:[72, 16]

Ds(θh) =
4ρfs(θh, 0) cos

2 θh
F (0)

(47)

The Sandford-Robertson BRDF uses an single-parameter elliptical distribution

function originally derived by Trowbridge and Reitz in 1975:[66, 57, 13, 35]

De,u(θh) =
1

c2 cos2 θh + sin2 θh
(48)

Unlike most other distributions presented here, this distribution is not normalized;

the normalization contained in the Sandford-Robertson BRDF depends on θi. Since

it is not explicitly a function of only θh, I do not include it here, and I include a u

subscript as a reminder this is an unnormalized distribution. The normalization Ne
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is included in the pre-factor subsection, below.

Although this research is primarily concerned with isotropic BRDF models, a

model may be made anisotropic by modifying the distribution function to depend

upon φh as well as θh. This was accomplished in the Ward BRDF for the Beckmann

distribution[70], and in the Ashikhman-Shirely BRDF for the cosine lobe distribution[1].

In both cases, the single parameter model becomes a 2-parameter model with an ad-

ditional angular dependence of the form kx cos
2 φh + ky sin

2 φh; if kx = ky, the depen-

dence on φh is eliminated and the distribution functions reduce to the isotropic form

stated above.

The anisotropic form of the Beckmann distribution is as follows:[70]

Db,a(ω̂h) =
1

πmxmy cos4 θh
exp

[

− tan2 θh

(

cos2 φh

m2
x

+
sin2 φh

m2
y

)]

(49)

The normalization presented here differs slightly from Ward’s since he neglected

the 1/ cos4 θh term in the Beckmann distribution and included a factor of 1/4 that I

put in σ(ω̂i, ω̂s). If mx = my = m, the Beckmann distribution Db(θh) is obtained.

The anisotropic form of the cosine lobe distribution is as follows:[1]

Dc,a(ω̂h) =

√
kx + 2

√

ky + 2

2π
(cos θh)

kx cos2 φh+ky sin2 φh (50)

Note that I have shifted kx and ky parameters by 1 relative to Ashikhman et al. to

account for dividing by the extra 1/ cos θh normalization term that Hyde and Shell

said should be present. Ashikhman defines the distribution function d(θh) without

the extra 1/ cos θh term that Hyde and Shell state should be present in microfacet

BRDF models[33, 61], and which I have included with the distribution function in this

dissertation. If one were to add the 1/ cos θh normalization to the definition provided

by Ashikhman, the above distribution function is obtained:
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√
ku + 1

√
kv + 1

2π cos θh
(cos θh)

ku cos2 φh+kv sin2 φh =

√
ku + 1

√
kv + 1

2π
(cos θh)

ku cos2 φh+kv sin2 φh−1

=

√
ku + 1

√
kv + 1

2π
(cos θh)

ku cos2 φh+kv sin2 φh−cos2 φh−sin2 φh

=

√
ku + 1

√
kv + 1

2π
(cos θh)

(ku−1) cos2 φh+(kv−1) sin2 φh

=

√
kx + 2

√

ky + 2

2π
(cos θh)

kx cos2 φh+ky sin2 φh

(51)

In the last line, kx = ku−1 and ky = kv−1 have been substituted into the original

form used by Ashikhman to put the function in the form obtained in Equation (50).

When written in this form with the 1/ cos θh correction, if kx = ky = k, the cosine

lobe distribution Dc(θh) results, as expected.

Geometric Attenuation Terms.

The Torrance-Sparrow BRDF model, which was perhaps the first microfacet

BRDF model, used the following geometric attenuation term:[65]

GT (ψp, θp) = 1− 1−
√

1− A(ψp, θp)

A(ψp, θp)
(52)

The factor A(ψp, θp) in the geometric attenuation term is defined as follows:

A(ψp, θp) =
sin2 ψp − cos2

θp − ψp

2

cos2
θp − ψp

2
− cos(θp − ψp) sin

2 θp

(53)

The inputted variables ψp and θp are the in-plane projected angles of the incident

and outgoing vector respectively, and are related to the incident and outgoing vectors

as follows:
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ψp = tan−1

[

cos

(

π − sin−1

[

sin θs sin φs sin θd
sin 2θd sin θh

])

tan θi

]

(54)

θp = ψp + 2θh (55)

A common geometric function was proposed by Blinn[3] and first widely used in

the Cook-Torrance BRDF:[14]

Gc(ω̂i, ω̂s) = min

[

1,
2 cos θh cos θs

cos θd
,
2 cos θh cos θi

cos θd

]

(56)

This geometric function is a simplification of the Torrance-Sparrow geometric

function. The first term in this equation obviously represents no geometric attenua-

tion; the second term represents geometric attenuation due to the outgoing angle or

microfacet normal being steep relative to the surface normal (frequently called ob-

scuration); the third term represents geometric attenuation due to the incident angle

or microfacet normal being steep relative to the surface normal (frequently called

shadowing).

The Modified Beard-Maxwell BRDF uses the following geometric function to

model effects due to shadowing and obscuration, containing two fitting parameters

that are determined for each material (Ω and τ), as follows:[19, 44]

Gbm(θh, θd) =
1 +

θh
Ω
e−2θd/τ

1 +
θh
Ω

(57)

Interestingly, this Beard-Maxwell geometric attenuation term is calculated solely

in microsurface coordinates, and not macrosurface coordinates. In the original Beard-

Maxwell paper in 1973, this geometric function had an additional term depending on

φn, which is a term derived from geometry;[43, 16] however, that term is dropped in
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the Modified Beard-Maxwell form. Crockett asserts its contribution is negligible [16].

A rigorous analysis of the geometric attenuation function in the context of an

unpolarized microfacet BRDF model was developed, assuming geometric optics, in

[32]. Heitz explains the necessity for a geometric attenuation term so that a microfacet

BRDF model conserves energy. The necessity for a geometric attenuation term to

conserve energy stems from the cross section conversion term σ given in Equation (37)

approaching ∞ as θi or θs approaches 90
◦. Heitz presents integral tests to determine

whether a BRDF conserves energy, and presents a method to derive a geometric

attenuation function that is dependent upon the microfacet distribution function.

From a geometric optics approach, this understanding makes sense. However, at

the scale of a microfacet, geometric optics may not be the best model. A different

approach based on a novel comparison between the microfacet BRDF and scalar

wave optics diffraction BRDF is developed in this dissertation in Chapter VI, which

no longer requires the cross section conversion term σ, eliminating the necessity of a

geometric attenuation term.

Directional Volumetric Reflection.

Two models make use of a directional volumetric contribution to the overall

BRDF. The Modified Beard-Maxwell model uses the following directional volumetric

term:[43, 16, 19, 44, 61]

Vbm(θi, θs) =
2

cos θi + cos θs
(58)

The Sandford-Robertson BRDF has an interesting form of the directional volu-

metric term, relating to the Fresnel reflection approximation Fs(θ) as follows:[57, 13]

Vs(θi, θs) =
Fs(θi)Fs(θs)

π
(59)
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Pre-factor Terms.

This section includes terms that were not categorized in the above sections, but

are still present in the microfacet BRDF models. Unlike the previous terms, the pre-

factor terms are often unique to only one specific model, and thus should not be varied

when creating specialized BRDF models. In some cases (such as Ashikhman-Shirley),

this includes terms due to using a different microfacet normalization, and terms not

found in other BRDF models that did not clearly belong in another category. It also

includes terms that may contain part of the cross section conversion σ but not the

entire form.

The Ashikhman-Shirley BRDF[1] contains the following pre-factor terms:

Pa(ω̂i, ω̂s) =
k + 1

4(k + 2)

(

1

cos θdmax [cos θi, cos θs]

)

(60)

The terms involving the cosine lobe parameter k are simply due to a difference

in normalization of the cosine lobe distribution and are unimportant. The term

4max[cos θi, cos θs] could be thought of as a portion of σ, but is not exactly the same

form. The term 1/ cos θd is unique to this BRDF and may be a geometric attenuation

but it was not entirely clear how it relates to terms in other BRDF models, so this

was left as a pre-factor term.

The Ward-Duer BRDF[70, 18] uses an approximation to the Beckmann distri-

bution, and does not contain the microfacet distribution normalization. Thus, the

pre-factor term exists to cancel the normalization performed by the Beckmann dis-

tribution:

Pw(θh) = cos4 θh (61)

The Sandford-Robertson BRDF has the most complex pre-factor form. This is due
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to the BRDF’s reliance upon Kirchoff’s Law for geometric attenuation, which is not

generalizable as a closed-form expression. This term is dependent upon an analytically

integrable expression for both the surface and the directional volumetric components

of the BRDF. Additionally, the normalization of the microfacet distribution function

and part of the cross section conversion σ are also present. Its form is as follows

(where ε0 and c are parameters of the Sandford-Robertson BRDF):

Ps(ω̂i, ω̂s) =
Ne(θi)

4π cos θs
[1− ρvFs(θi)− ε0Fs(θi)] (62)

The microfacet normalization Ne(θi) above is as follows:[57, 13, 35]

Ne(θi) =
1

H(θi)
=

2c2

(1− c2) cos θi +
2c2 + (1− c2)2 cos2 θi
√

(1− c2)2 cos2 θi + 4c2

(63)

The Cook-Torrance BRDF, when transformed to this generalized microfacet no-

tation, also contains a pre-factor term of 4. This is unimportant as it simply scales

the parameter ρs by a fixed overall factor not dependent upon any variables; scaling

the parameter ρs by 1/4 compensates for this pre-factor.

Common Unpolarized BRDF Models.

In this section, several common BRDF models are related to the general form

of a microfacet BRDF developed in Equation (38). By putting these models in the

expected form of a microfacet BRDF (where possible), it is easier to understand what

assumptions are made by each model, as well as determining what modifications may

be performed to enhance the fidelity of a BRDF model.

Many different models are presented in this section, but have been rewritten to

fit the common form of a microfacet distribution function presented earlier in this

chapter. By writing the models in a common form, the similarities and differences
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between the models are more readily apparent. At the end of the section, a summary

table is presented to show how these models are similar and how they are different.

From the summary table, it is observed that the Cook-Torrance BRDF model is of

particular importance, since it is not an overly complex microfacet BRDF model, yet

still contains the major components of a microfacet BRDF model. In addition, later in

the chapter it is shown that current spectral BRDF extensions of the microfacet model

do not adequately describe the BRDF near the specular peak. Since the specular lobe

is primarily influenced by the microfacet distribution function, it is instructive to

devote particular attention to the choice of microfacet distribution functions between

the models. For this reason, the BRDF models are grouped in order of distribution

function in this section. Not all microfacet BRDF models are listed here, but many

of the more popular models are presented.

Phong.

One of the earliest BRDFs that is still popular today in computer graphics is

the Phong BRDF. It can be expressed as follows (where the normalization is altered

slightly from the original form):[51]

fr(ω̂i, ω̂s) =
ρs
2π

(k + 2)(ω̂i · ω̂s)
k +

ρd
π

(64)

Since ω̂i · ω̂s = cosα, where α is the angle between ω̂i and ω̂s, this BRDF cannot

be considered a microfacet model at all, as it does not include a Fresnel term and it

does not include a surface normal distribution (i.e., α 6= θh). Thus, the Phong BRDF

model is not a geometric optics-based model, and is not used in this dissertation. It is

included here for completeness due to its popularity, and because it led to development

of the Blinn-Phong BRDF model, which can be loosely interpreted as a microfacet

model.
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Blinn-Phong.

Blinn made a slight modification to the Phong BRDF, noticing it was better

to relate the BRDF dependence to the half vector. The Blinn-Phong BRDF is as

follows:[3]

fr(ω̂i, ω̂s) = ρsDc(θh) +
ρd
π

(65)

This modification by Blinn could allow one to loosely interpret Blinn-Phong as a

microfacet model, using the cosine lobe surface normal distribution given in Equation

(42). That said, it does not include a Fresnel term and thus is only loosely a microfacet

model.

Ashikhman-Shirley.

In 2000, Ashikhman and Shirley developed a BRDF model based on the cosine

lobe distribution[1]. Although the model presented was for anisotropic surfaces, it can

be easily reduced to isotropic form by setting the author’s parameter nu = nv = k.

This yields a form of the BRDF as follows:[1, 47]

fr(ω̂i, ω̂s) = ρs

(

k + 1

4(k + 2)

)(

Dc(θh)F (θd)

cos θd max [cos θi, cos θs]

)

(66)

Ashikhman mentions one may add a constant diffuse offset to this BRDF, but

that this could lead to energy conservation issues when used in conjunction with the

Fresnel formula. He also provides an approximate scaling of a volumetric term, but it

is based on the Schlick approximation to the Fresnel equation and does not contain any

other angular dependence other than forcing conservation of energy, so it is excluded

here. Ngan’s study of BRDF models also neglected this diffuse volumetric term

given by Ashikhman, instead using a Lambertian term[47]. The terms in parentheses
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depending upon k are due to a slightly different normalization in Ashikhman-Shirley

as opposed to the normalization used for the cosine lobe distribution (as was discussed

in the distribution function section); the result would be a different fitting parameter

ρs but the overall best fit quality would not be affected since the angular dependence

was not altered. Out of the models using the cosine lobe distribution, the Ashikhman-

Shirley model most closely resembles what one would expect a microfacet model to

look like based on the underlying physics, having many major elements present for

surface reflection. However, it is worth noting it lacks the σ(θi, θs) dependence.

Priest Microfacet Model.

The Priest Microfacet Model was the basis upon which the well-known Priest-

Germer polarimetric BRDF model was built. Its form is as follows:[53]

fr(ω̂i, ω̂s) = ρsσ(θi, θs)Dg(θh)F (θd) (67)

This model does not account for volumetric or diffuse scattering, but has all major

elements of geometric optical surface reflection. In this model, a Gaussian (Beck-

mann) distribution is assumed for surface normal orientation. There is no geometric

attenuation term, but the geometric scaling due to conversion from cross section to

BRDF is present.

Ward-Duer.

In 1992, Ward created a novel anisotropic BRDF model which reduced to an

isotropic form by setting his αx = αy = m. This BRDF model originally included a

term proportional to
√

σ(θi, θs) instead of σ(θi, θs). This
√
σ dependence was fixed

by Duer to form the Ward-Duer model, and was shown by Ngan to be more accurate

than the Ward model[47]. The Ward-Duer model is as follows:[18]
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fr(ω̂i, ω̂s) = ρsσ(θi, θs)Db(θh) cos
4(θh) +

ρd
π

(68)

The Ward-Duer BRDF model uses the Beckmann distribution, but it uses a differ-

ent normalization which is only accurate if θh . 0.2 rad[70]. This model also ignores

Fresnel effects, and does not include any geometric obscuration.

Torrance-Sparrow.

Torrance-Sparrow was one of the first microfacet BRDF models created. It was

formulated to represent off-nadir reflection, and thus represents the ratio of the BRDF

off-nadir to the BRDF at nadir; i.e., fr(ω̂i, ω̂s)/fr(ω̂i, ω̂i
′) where, using the notation

of Equation (26), ω̂i
′ = [1, θi, π]

T is the specular reflection from the macrosurface

normal. Solving for the BRDF off-specular, its form is as follows:[65]

fr(ω̂i, ω̂s) =









ρs
GT (ψp, θp)

cos θs
exp(−c2θ2h)F (θd) + cos θi

ρs
F (θi)

cos θi
+ cos θi









fr(ω̂i, ω̂i
′) (69)

This model was groundbreaking in the literature, and is cited by many models

developed after its time. It included such notions as Fresnel scaling by the difference

angle, and included a distribution function: exp(−c2θ2h). This distribution function,

for small θh, is approximately the same as the unnormalized Beckmann distribution

in Equation (43) if c = 1/m (since tan θh ≈ θh and cos θh ≈ 1). For this reason,

the Torrance-Sparrow distribution function is not listed separately, even though his

approach appears to be novel for his time. The geometric attenuation term was

discussed previously.

The additional cos θi term in the numerator could be thought of as a volumetric

term in the model, as it does not include any surface reflectance scaling. The de-

nominator of the equation is purely for normalization. In fact, the equation could be
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rewritten in a more symmetric form using basic algebra as follows:

fr(ω̂i, ω̂s) =

(

ρs exp(−c2θ2h)F (θd)GT (ψp, θp) cos θi + cos2 θi cos θs
ρsF (θi) cos θs + cos2 θi cos θs

)

fr(ω̂i, ω̂i
′) (70)

In this form, it is clear that other than the microsurface distribution, the denom-

inator is the numerator if θh = 0; that is, the specular reflection case where the half

vector aligns with the macrosurface normal. In this case, the geometric attenuation

factor GT = 1, and θd = θi since the microfacet orientation is identical to the macro-

surface normal. That said, it is also clear that the Torrance-Sparrow BRDF does not

obey symmetry (that is, the result is different if ω̂i and ω̂s are swapped).

Alternate Torrance-Sparrow Form.

A slight modification of the Torrance-Sparrow BRDF form above is sometimes

given as follows:[59, 45]

fr(ω̂i, ω̂s) = ρsσ(θi, θs)GT (ψp, θp) exp(−c2θ2h)F (θd) +
ρd
π

(71)

The parameters in this rewritten form are not the same as the parameters in the

original form. In this form, the distribution function and all other major elements

are the same, but its form appears closer to that of standard microfacet BRDFs, and

it is not dependent upon knowledge of the specular BRDF value. The second term

in the above rewritten form often appears as a/dωi in the literature, but it is more

clearly written as a Lambertian term[45]. The primary components of this alternate

Torrance-Sparrow form remain the same, although the σ(θi, θs) dependence is also

included. Since this is only a minor variation of the Torrance-Sparrow BRDF, it is

not given a different name.
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Cook-Torrance.

The Cook-Torrance BRDF was introduced in 1982 as one of the first modern

microfacet BRDFs, establishing a common distribution function (based on the Beck-

mann distribution) and a symmetric form. This was one of the first popular BRDFs to

use a simple geometric attenuation term that numerically approximates the Torrance-

Sparrow geometric attenuation. Its form is as follows:[14]

fr(ω̂i, ω̂s) = 4ρsσ(θi, θs)Db(θh)F (θd)Gc(ω̂i, ω̂s) +
ρd
π

(72)

The factor of 4 arises from writing the BRDF in the form of my σ(θi, θs) function;

it would be compensated by a constant scaling of the fit parameter ρs and is thus

not important. The only missing component is a directional volumetric contribution

to the BRDF. In this light, it is perhaps not surprising that Ngan found this Cook-

Torrance BRDF to perform relatively well for a wide variety of materials as compared

to other BRDF models included in his study[47].

Sandford-Robertson.

The Sandford-Robertson BRDF was developed in 1985 to handle infrared proper-

ties of aircraft paints[57]. The original paper can be difficult to obtain, but descrip-

tions of the original model can also be found in polarimetric extensions by Conant[13]

and Jafolla[35]. Although loosely a microfacet model, its primary concern was to force

conservation of energy through employment of Kirchhoff’s Law.

Recall the Sandford-Robertson BRDF used an approximation to Fresnel Fs(θ),

and an unnormalized elliptical distribution function given by De,u(θh), as discussed

previously. Using these equations, its form is as follows:
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fr(ω̂i, ω̂s) = fs(ω̂i, ω̂s) + fv(θi, θs)

=
Ne(θi)De,u(θh)

4π cos θs
[1− ρvFs(θi)− ε0Fs(θi)] + ρvVs(θi, θs)

(73)

Sandford-Robertson normalized the distribution function in θi space rather than θh

space, so the normalization was kept separate here as Ne(θi), given in the Equation

(63) of the pre-factor section above.

This BRDF is somewhat unique in that it uses a Fresnel approximation for the

volumetric component of the BRDF as well as the surface reflection component of

the BRDF. Conservation of energy is assured by using Kirchhoff’s Law, represented

by the term in brackets, rather than through a direct geometric attenuation term.

Also, the Fresnel approximation in terms of θd is never computed directly. For surface

reflection, the Fresnel approximation is implicitly called through the Kirchhoff term,

but in (ω̂i, ω̂s) macrosurface coordinates instead of (ω̂h, ω̂d) microsurface coordinates.

Also, although part of the σ(θi, θs) term is present, it is missing a dependence on

cos θi. The normalization term Ne(θi) does have a cos θi term that could be factored

out to provide this 1/ cos θi dependence, but the paper states this is for distribution

normalization, and thus is separate from the cross section conversion σ(θi, θs). Finally,

note that it is not obvious whether the Sandford-Robertson BRDF is symmetric with

respect to ω̂i, ω̂s input coordinates due to this normalization with respect to θi.

The Sandford-Robertson BRDF model depends on four parameters: b (within

Fs(θ)), ρv, ε0, and c (within the distribution function). A nice property of Sandford-

Robertson is that there are well-defined constraints on these values to obtain a physi-

cal BRDF [13]. Recall that 1/Gs is defined in Equation (40); the constraints are then

given as follows:

• 0 ≤ b < 1 to maintain the Fresnel approximation

• 0 ≤ c < 1 to maintain an elliptical distribution
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• 0 ≤ ε0 ≤ Gs to ensure directional emittance never exceeds 1

• 0 ≤ ρv ≤ Gs − ε0 to ensure conservation of energy

Modified Beard-Maxwell.

The Beard-Maxwell BRDF model was originally developed in 1973 to model

paints[43]. However, it is not used much today in its unmodified form. The Mod-

ified Beard Maxwell model is far more popular, in part due to an extensive library

of parameters contained in the NEF database to be discussed later. Comprehensive

discussions of the Beard-Maxwell model can be found in an AFRL Technical Report

by Crockett[16] and a dissertation by Shell[61].

The Modified Beard-Maxwell model has the following form:[19, 44]

fr(ω̂i, ω̂s) = ρsσ(θi, θr)Dbm(θh)Gbm(θh, θd)F (θd) + ρvVbm(θi, θs) + ρd (74)

As written above, this model uses the Cauchy distribution for the surface normals,

and contains a simple directional volumetric scattering term. It also has a separate

diffuse volumetric scattering term that was not specified in the original Beard-Maxwell

model. As discussed when cataloging distribution functions above, sometimes the bi-

static scan distribution Ds(θh) is used instead of the modified Cauchy distribution

Dbm(θh) above.

Recently, it appears the NEF database has been updated to include a more com-

plex form of the volumetric term, and parameters have been rearranged (as of version

10). That latest version is not discussed in this document, as there is little informa-

tion on that version available at this time. However, be aware that later versions of

the NEF Database may not use the Modified Beard-Maxwell form described above.
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Table 3.1. Common Unpolarized Microfacet BRDF Models

Model P D(ω̂h) G V ρd? σ? F? # Prm
Phong 1 (ω̂i · ω̂s)

k n/a n/a Y n n 3
Blinn-Phong 1 Dc(θh) n/a n/a Y n n 3
Ash.-Shir. Pa Dc(θh) n/a n/a Y n Y 5
Priest 1 Db(θh) n/a n/a Y Y Y 5
Ward-Duer Pw ≈ Db(θh) n/a n/a Y Y Y 5
Torr.-Spar. * ≈ Db(θh) GT n/a Y n Y 5
Alt Torr.-Spar. 1 ≈ Db(θh) GT n/a Y Y Y 5
Cook-Torr. 4 Db(θh) Gc n/a Y Y Y 5
Wellems 1 Dh(θh) GT n/a Y Y Y 6
Beard-Maxwell 1 Dbm,u(θh)

† Gbm Vbm Y Y Y ≥8†

Sand.-Rob. Ps De,u(θh) Kirchhoff Vs n n ∗∗ 4
† In place of the Cauchy distribution, Beard-Maxwell can use the bi-static scan, which
adds several more parameters ρfs(θh) to specify Ds(θh) empirically
∗ The original 1967 Torrance-Sparrow BRDF does not have a convenient form for the
pre-factor, as it was designed to relate in-plane BRDF to the specular peak via a ratio.
∗∗ Sandford-Robertson uses a Fresnel approximation Fs(θ), but it is used indirectly in
the reflective component via Kirchhoff’s law, and is not in microsurface coordinates

Unpolarized BRDF Model Remarks.

As can be seen when putting these BRDF models in a common form, there are

many shared elements. The most common choice for surface normal distribution is

the Beckmann (Gaussian) distribution. This includes: Priest, Ward-Duer, Torrance-

Sparrow, and Cook-Torrance BRDF models. Another reasonable choice is the cosine

lobe distribution, which is used by Blinn-Phong and Ashikhman-Shirley distribu-

tions. Finally, the Sandford-Robertson BRDF uses an elliptical distribution, and

uses Kirchhoff’s law to enforce geometric attenuation. The results are summarized in

Table 3.1[5].

Within these models, the Ward-Duer model has no apparent theoretical advantage

in accuracy over the Cook-Torrance model. Similarly, the Torrance-Sparrow model

uses an approximation for the distribution function that makes its use suspect at

large θh angles that occur in some view geometries. The Cook-Torrance BRDF is
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also nearly identical to the Priest Microfacet Model, except with a geometric scaling

term and Lambertian component. For this reason, it is expected that the Cook-

Torrance BRDF to perform the best out of these Beckmann models analyzed in this

section. Similarly, it is expected that the Ashikhman-Shirley (modified to include a

Lambertian term) to perform best out of models with the cosine lobe distribution

due to inclusion of Fresnel scaling. Ngan’s assessment agrees with these conclusions

when he states the best models he analyzed were Ashikhman-Shirley, Cook-Torrance,

and He-Torrance[47]. Note that Ngan did not compare Sandford-Robertson, Modified

Beard-Maxwell, or Torrance-Sparrow in his analysis; he did additionally include He-

Torrance and Lafortune models. The He-Torrance model is not a geometric optics

microfacet model and includes an infinite series sum[31]; the Lafortune model is

similar to the Blinn-Phong model with an added parameter representing the number

of specular lobes[39, 45].

By putting these microfacet BRDFs into a uniform format, some observations

can be made. For example, consider the Ashikhman-Shirley BRDF model. The

geometric scaling and additional dependence on θd outside of Fresnel may suggest

that replacing those terms with a different model’s geometric scaling may achieve

better performance. Also, a volumetric and Lambertian scattering term may also be

incorporated in the BRDF to improve performance.

One could also attempt to create a flexible microfacet BRDF function from this

compilation of BRDFs, using the general form in Equation (38). The distribution

function, geometric function, and volumetric function could be chosen for a particular

application and compared with other choices to determine the ideal form of a BRDF

for each material separately. For example, if one were to modify the Cook-Torrance

BRDF model to include a directional volumetric component based on the Modified

Beard-Maxwell model, one could use a notional BRDF of the following form:
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fr(ω̂i, ω̂s) = ρsσ(θi, θs)Db(θh)F (θd)Gc(ω̂i, ω̂s) +
2ρv

cos θi + cos θs
+
ρd
π

(75)

When making such combinations, care must be taken to ensure fit parameters are

obtained that do not violate conservation of energy, by ensuring the DHR is restricted

to the range [0, 1] for all ω̂i in the hemisphere.

For a particular material, one could also attempt to fit to the cosine lobe distribu-

tion instead of the Beckmann distribution by replacing Db(θh) with Dc(θh) and com-

paring results, choosing the distribution function best suited to the material. Fitting

to anisotropic versions of these distribution functions could also be used, depending

on material properties. This flexible microfacet BRDF model is used in Chapter V.

Polarimetric BRDF Models.

When incorporating polarization effects to a BRDF, the primary modification to

the general BRDF form is that the Fresnel equation is no longer a scalar value, but

is in general a 4x4 Mueller matrix which is referred to as
↔

F(ω̂i, ω̂s). The resulting

polarimetric BRDF (pBRDF) is also a 4x4 Mueller BRDF matrix must be multiplied

by the incident Stokes vector,
↔

f r(ω̂i, ω̂s).

In microfacet coordinates, the Mueller matrix for Fresnel reflection of the incident

beam is [59]

↔

Fh(θd) =
1

2



















Fs + Fp Fs − Fp 0 0

Fs − Fp Fs + Fp 0 0

0 0 2Re[rsr
∗
p] 2 Im[rsr

∗
p]

0 0 −2 Im[rsr
∗
p] 2Re[rsr

∗
p]



















(76)

The subscript h is a reminder that this equation is for Fresnel reflection in the mi-

crofacet (half vector) coordinate system, not in the macrosurface coordinates. In
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macrosurface coordinates, the expression for Fresnel reflection is

↔

F(ω̂i, ω̂s) = Rz(φh + π)Ry(θh)
↔

Fh(θd)Ry(−θh)Rz(−φh) (77)

where Ra(θ) is a right-handed rotation about the a axis by an amount θ, as before,

but the rotation must be done in terms of Stokes vector rotation, as the Stokes

vector is a 4-dimensional constrained vector (not an orthogonal basis). A rotation

in Mueller matrix coordinates is not easily defined in general (for arbitrary axis of

rotation). It is simpler to find
↔

F by rotating the electric field vectors directly (using

the Jones matrix), then converting those results to the Mueller matrix form. Since

Fresnel reflection does not contain any depolarizing element, this calculation can be

performed] exactly using the Jones calculus[52, 53].

Recall that, for isotropic media, the electric field is perpendicular to the direction

of propagation, but can be s polarized (perpendicular to the plane of incidence)

or p polarized (parallel to the plane of incidence). In this two-dimensional space,

the following equation defines the Jones matrix relationship between incident and

scattered electric fields due to Fresnel reflection
↔

Fj:[52, 53]

~Ej,o =







Es,o

Ep,o






=

↔

Fj(ω̂i, ω̂s)~Ej,i

= R(ηo)
↔

Fj(θd)R(−ηi)~Ej,i

=







cos ηo sin ηo

− sin ηo cos ηo













rs(θd) 0

0 rp(θd)













cos ηi − sin ηi

sin ηi cos ηi













Es,i

Ep,i







(78)

As shown above, a rotation into ω̂h space is used to diagonalize the Fresnel reflec-

tion, and a rotation to ω̂s space is used to transform Fresnel reflection into scattered
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coordinates. Note that the Fresnel terms used are the complex Fresnel reflection

terms for the electric field reflection (rp and rs), so the Fresnel matrix is complex.

This matrix multiplication can be simplified to the following form:

↔

Fj(ω̂i, ω̂s) =







Fss Fps

Fsp Fpp







Fss = rs(θd) cos ηi cos ηo + rp(θd) sin ηi sin ηo

Fps = −rs(θd) cos ηo sin ηi + rp(θd) cos ηi sin ηo

Fsp = rp(θd) cos ηo sin ηi − rs(θd) cos ηi sin ηo

Fpp = rp(θd) cos ηi cos ηo + rs(θd) sin ηi sin ηo

(79)

The variables ηi and ηo relate to the transformation to half-vector and difference

vector coordinates from incidence angle and scattered angle coordinates. Let ŝi be a

unit vector in the direction of the s polarization state of the incident beam and let

ŝo be a unit vector in the direction of the s polarization state of the scattered beam.

Then, these values are given by Priest and Germer as[52, 53]

cos ηi = ŝi ·
(

ω̂i × ω̂h

||ω̂i × ω̂h||

)

=
ω̂i × ẑ

||ω̂i × ẑ|| ·
ω̂i × ω̂h

||ω̂i × ω̂h||

=
ω̂h · ẑ− (ω̂i · ẑ)(ω̂i · ω̂h)

||ω̂i × ẑ|| ||ω̂i × ω̂h||

=
cos θh − cos θi cos θd

sin θi sin θd

(80)
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cos ηo = ŝo ·
(

ω̂s × ω̂h

||ω̂s × ω̂h||

)

=
ω̂s × ẑ

||ω̂s × ẑ|| ·
ω̂s × ω̂h

||ω̂s × ω̂h||

=
ω̂h · ẑ− (ω̂s · ẑ)(ω̂s · ω̂h)

||ω̂s × ẑ|| ||ω̂s × ω̂h||

=
cos θh − cos θs cos θd

sin θs sin θd

(81)

The 2x2 complex matrix
↔

Fj(ω̂i, ω̂s) is then transformed to a Mueller matrix, given

as [4, 36, 21, 53]

F00 = |Fss|2 + |Fsp|2 + |Fps|2 + |Fpp|2

F01 = |Fss|2 + |Fsp|2 − |Fps|2 − |Fpp|2

F02 = FssF
∗
ps + F ∗

ssFps + FspF
∗
pp + F ∗

spFpp

F03 = i(FpsF
∗
ss − F ∗

psFss) + i(FppF
∗
sp − F ∗

ppFsp)

F10 = |Fss|2 − |Fsp|2 + |Fps|2 − |Fpp|2

F11 = |Fss|2 − |Fsp|2 − |Fps|2 + |Fpp|2

F12 = FssF
∗
ps + F ∗

ssFps − FspF
∗
pp − F ∗

spFpp

F13 = i(FpsF
∗
ss − F ∗

psFss)− i(FppF
∗
sp − F ∗

ppFsp)

F20 = FssF
∗
sp + F ∗

ssFsp + FpsF
∗
pp + F ∗

psFpp

F21 = FssF
∗
sp + F ∗

ssFsp − FpsF
∗
pp − F ∗

psFpp

F22 = FssF
∗
pp + F ∗

ssFpp + FpsF
∗
sp + F ∗

psFsp

F23 = i(FpsF
∗
sp − F ∗

psFsp)− i(FssF
∗
pp − F ∗

ssFpp)

F30 = i(FssF
∗
sp − F ∗

ssFsp) + i(FpsF
∗
pp − F ∗

psFpp)

F31 = i(FssF
∗
sp − F ∗

ssFsp)− i(FpsF
∗
pp − F ∗

psFpp)

F32 = i(FssF
∗
pp − F ∗

ssFpp) + i(FpsF
∗
sp − F ∗

psFsp)

F33 = FssF
∗
pp + F ∗

ssFpp − FpsF
∗
sp − F ∗

psFsp

(82)

72



↔

F(ω̂i, ω̂s) =
1

2



















F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33



















(83)

A couple of special cases are worth noting. First, if in-plane data is taken, there is

symmetry in the Fresnel coefficients. Only the following coefficients are non-zero and

are related: F00 = F11, F01 = F10, F22 = F33, and F23 = −F32 (all other coefficients

are zero since ηi = ηo = 0). Second, if the index of refraction is real, then regardless

of orientation of the incident and scattered vectors the
↔

Fj Jones matrix form of the

Fresnel expression is also real. This means there is no phase change in the material,

and thus the circular polarization state is unchanged (i.e., F3x = Fx3 = 0 for all

x 6= 3)[52]. These properties may hold for a BRDF, but are not necessarily valid

since the BRDF can also have a volumetric reflection component that alters this

surface reflection polarization behavior. However, if a material is primarily a surface

reflector, it is expected that these properties approximately hold for the BRDF as well.

In fact, a metric measuring how closely these properties hold could possibly be used

as a measure of how volume-reflecting a material is relative to the surface-reflecting

properties.

This Fresnel Mueller matrix handles the surface reflection’s polarization effects.

Other modifications are also required for the volumetric components (directional and

diffuse) to put them in matrix form, although typically the diffuse volumetric compo-

nent is assumed to be depolarizing [59]. This depolarizing volumetric Mueller matrix

is referred to as
↔

Md, and defined as
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↔

Md =



















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



















(84)

Thus, the polarimetric expression for a microfacet BRDF is as follows:

↔

f r(ω̂i, ω̂s) = ρsσ(θi, θs)G(ω̂i, ω̂s)D(θh)
↔

F(ω̂i, ω̂s) + ρvV (ω̂i, ω̂s)
↔

Mv +
ρd
π

↔

Md (85)

In this formulation, fr,00(ω̂i, ω̂s) = fr(ω̂i, ω̂s); i.e., the first entry in the matrix is

the unpolarized BRDF. It is possible for V (ω̂i, ω̂s) to have a polarimetric component,

which is represented by the arbitrary definition of
↔

Mv; this could be the Fresnel

Mueller matrix
↔

F(θd), the diffuse (depolarizing) Mueller matrix
↔

Md, or a Mueller

matrix unique to the model.

Priest-Germer.

The Priest-Germer pBRDF polarizes the Priest Microfacet Model BRDF discussed

in Section 3.6. By replacing the Fresnel term in the Priest Microfacet Model with the

Fresnel Mueller Matrix, the Priest-Germer pBRDF is obtained as follows:[52, 53]

↔

f r(ω̂i, ω̂s) = ρsσ(θi, θs)Dg(θh)
↔

F(ω̂i, ω̂s) (86)

As can be seen, its form is identical to the previous form, except the polarimetric

Fresnel Mueller Matrix discussed above is used in place of the Fresnel equation for

unpolarized light.
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Hyde.

The Hyde pBRDF was derived using a Method of Moments electromagnetic calcu-

lation to develop a fully polarimetric model. Functionally, using the results of Hyde’s

Method of Moments calculation, his pBRDF extended the Priest-Germer pBRDF by

adding the geometric factor that was derived by Blinn and used in the Cook-Torrance

BRDF. This model is given as[33]

↔

f r(ω̂i, ω̂s) = ρsσ(θi, θs)Dg(θh)Gc(ω̂i, ω̂s)
↔

F(ω̂i, ω̂s). (87)

The Hyde pBRDF model includes a slightly different form of the distribution Dg(θh),

with two parameters: σh and ℓ. The rationale for this choice is because Hyde reasoned

the surface is more correctly described by a probability distribution not just in surface

height, but also in correlation length, given as

σg =
σh

√
2

ℓ
, (88)

where σh is the Gaussian width of the probability distribution function describing

the surface height and ℓ is the Gaussian width of the probability distrubtion func-

tion describing the correlation length of the surface. With this substitution the Hyde

pBRDF Gaussian distribution reduces to Equation (44) (and thus also to the Beck-

mann distribution). This substitution is noted again in Chapter VI.

A diffuse component was also generated by the Hyde pBRDF but is not included

above; if one wanted to add a generic diffuse component, it would simply be of the

form given in Equation (85) as a depolarizing Lambertian component.
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Conant-Iannarilli.

The Conant-Iannarilli pBRDF polarizes the Sandford-Robertson BRDF discussed

in Section 3.6. Since the Sandford-Robertson BRDF does not explicitly use the Fresnel

equation but instead uses an approximation, a different approach was used to polarize

this model. To do so, the model first estimates ñ from the Fresnel approximation

Fs(θd) (which depends on a single parameter b), then assigns the Mueller matrix

formulation above to the fractional portion of the BRDF produced by the specular

term in the original Sandford-Robertson BRDF. The volumetric component of the

Sandford-Robertson BRDF is assumed to be depolarizing (i.e., it is multiplied by
↔

Md).

The Conant-Ianarilli pBRDF form is as follows:[13]

↔

f r(ω̂i, ω̂s) =
fs(ω̂i, ω̂s)

fs(ω̂i, ω̂s) + fv(θi, θs)

↔

F(ω̂i, ω̂s) + fv(θi, θs)
↔

Md (89)

where fs(ω̂i, ω̂s) and fv(θi, θs) are given by the unpolarized Sandford-Robertson

model in Equation (73).

Other Polarimetric Models.

It is trivial to polarize nearly all other unpolarized microfacet models discussed

(as long as Fresnel reflection is modeled) by replacing the Fresnel reflection with
↔

F(ω̂i, ω̂s), and the diffuse component with the depolarizing
↔

Md matrix. For example,

one could generate a polarimetric Cook-Torrance model as follows:

↔

f r(ω̂i, ω̂s) = ρsσ(θi, θs)Db(θh)Gc(ω̂i, ω̂s)
↔

F(θd) +
ρd
π

↔

Md (90)
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3.7 Spectral Dependence of Microfacet BRDFs

Up to this point, the possibility of a spectral dependence in the microfacet model

has been largely ignored. However, there are some existing techniques for inserting

the wavelength dependence in microfacet models in a manner that is easy to use;

these techniques are discussed in this section. After introducing these techniques, a

brief analysis is presented that indicates there is still room for improvement.

From a modeling standpoint, looking at the generic form of an unpolarized mi-

crofacet model in Equation (38) and inserting wavelength dependence, the following

result is expected:

fr(ω̂i, ω̂s, λ) = ρsG(ω̂i, ω̂s)D(θh)F (θd, ñ(λ))σ(θi, θs) + ρvV (ω̂i, ω̂s, λ) +
ρd(λ)

π
(91)

In the microfacet model, where physical optics is ignored, ideally surface reflection

should not depend on wavelength except via the Fresnel term (where ñ is known

to vary with wavelength). If one had a material with measured ñ (both real and

imaginary parts), and measured the BRDF of such a material, the only variation

with wavelength for surface reflection should be directly analogous to the variation in

Fresnel reflectance for a given pair of incident and scattered angles if the microfacet

model strictly holds.

If the microfacet BRDF models do not strictly hold (as is expected since phys-

ical optics is neglected) but still has approximate accuracy, it may be possible to

reinterpret the microfacet distribution function D(θh) as instead being a scattering

distribution function, which could then vary with wavelength. As λ increases, for the

same surface normal distribution the scattering distribution function is expected to

appear more flat, and thus it is expected that the BRDF, in general, becomes more
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specular. For a surface reflector, the width of the specular lobe is due to the micro-

facet distribution, and not due to the geometric scaling or Fresnel components (which

simply scale the overall height, but do not change relative width significantly). There

was no experimental evidence found in the current literature to indicate how BRDF

functions scale with small changes in wavelength in the MWIR and LWIR; one of the

intended major contributions of my work is to fill that void. BRDF measurements

tend to be at 3.39 and 10.6 µm in the MWIR and LWIR, with other methods to es-

timate the BRDF being used in between. These common techniques in the literature

for approximating BRDF at an unknown wavelength are summarized here.

Crockett mentions three approaches in his description of the Modified Beard-

Maxwell microfacet BRDF model, two of which are general enough to apply to any

BRDF model. The first approach he mentions is to simply scale the BRDF measured

at the closest wavelength λ0 by the DHR at both λ0 and the target wavelength λ, as

follows:[16]

fr(ω̂i, ω̂s, λ) =
ρ(ω̂i, λ)

ρ(ω̂i, λ0)
fr(ω̂i, ω̂s, λ0) (92)

A second approach, stated by Crockett and also used by Montanaro (and the

NEF database, which uses the Modified Beard-Maxwell BRDF model), is to linearly

interpolate between two known BRDF wavelengths λj and λk and the reflectance

ρ(ω̂i, λ), as follows:[16, 44]

fr(ω̂i, ω̂s, λ) = ρ(ω̂i
′, λ)

[(

λj − λ

λj − λk

)

fr(ω̂i, ω̂s, λk)

ρ(ω̂i
′, λk)

+

(

λ− λk
λj − λk

)

fr(ω̂i, ω̂s, λj)

ρ(ω̂i
′, λj)

]

(93)

Montanaro states that early materials in the NEF used a fixed DHR value at

θ′i = 10◦, but later materials use a fixed DHR value at θ′i = 20◦ (φ′
i = 0), which
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performs better [44]. For sake of a preliminary investigation, consider two separate

cases: θ′i = 20◦ (which is called fixed linear interpolation), and θ′i = θi (which is

called variable linear interpolation); the latter seems to make more intuitive sense,

but appears to not be used in the NEF database.

One of the advantages of the Sandford-Robertson BRDF is that it allows for

scaling with respect to wavelength based on the DHR. Knowledge of DHR specifies

the parameter ε0 in Sandford-Robertson, and thus that parameter varies as a function

of λ in a way that is easy to measure in the laboratory. The volumetric parameter ρv

also varies as a function of wavelength, but other parameters are assumed constant

[57, 13, 35]. That said, experimental evidence in the MWIR or LWIR to confirm or

deny the Sandford-Robertson wavelength variation was not found.

Crokett proposed a third approach, which was to interpolate the BRDF param-

eters in Beard-Maxwell[16]. He proposes a solution related to Beard-Maxwell’s bi-

static scan function. Shell also mentioned Crockett’s scaling of BRDF parameters

in his Ph.D. dissertation[61]. To accomplish this, one must measure the BRDF at

multiple wavelengths, then fit to a microfacet model. The NEF only measures two

wavelengths in the MWIR and LWIR, so the NEF dataset does not form a good

basis upon which to perform this analysis. Extending this approach to other BRDF

models for surface-reflecting materials was the initial approach taken for this disser-

tation; however, in Chapter V, flaws in this approach are noted, requiring a shift to

pioneering a method to compare microfacet BRDFs with scalar wave optics BRDFs,

which are based on physical optics and therefore should have an inherent wavelength

dependence. This connection is developed in Chapter VI. Despite these noted flaws

in the microfacet model, the addition of experimentally measured BRDF data in the

MWIR and LWIR for multiple samples represents a significant contribution in this

dissertation that did not previously exist.
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Investigation of Microfacet Wavelength Scaling.

This section examines some existing BRDF data in the literature to suggest pos-

sible additional wavelength dependence of BRDFs not currently captured by the

microfacet BRDF models. In particular, two common sources of BRDF data are

examined: the MERL database and the NEF database. The results suggest there

should be a wavelength dependence in at least the microfacet distribution function.

Two different approaches were taken to quantify the error in wavelength scaling

techniques given in Equations (92) and (93). The first approach was based on data

in the NEF database, and the second approach was based on data in the MERL

database. The general procedure was to compute the relative error of scaling the

BRDF at one wavelength to the BRDF at another wavelength. In both approaches,

the following definition of relative error was used:

ǫ(ω̂i, ω̂s) =
fr(ω̂i, ω̂s)− s(ω̂i, ω̂s)

fr(ω̂i, ω̂s)
(94)

where fr(ω̂i, ω̂s) represents the actual BRDF value and s(ω̂i, ω̂s) represents the inter-

polated BRDF value. Thus, the reported error at each incident and scattered angle

is relative to the actual BRDF value at that same incident and scattered angle. The

magnitude indicates amount of relative error; if ǫ is positive, the actual BRDF value

exceeds the interpolated BRDF; if ǫ is negative, the interpolated BRDF value exceeds

the actual BRDF.

Common Sources of BRDF Data.

There are several sources of measured BRDF data, but the two that are per-

haps most prevalent are Matusik’s Mitsubishi Electric Research Laboratory (MERL)

database[42] and the Non-conventional Exploitation Factors (NEF) Database[72].

The MERL database contains densely measured BRDF data for 100 materials, with
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three channels for each material (red, green, and blue). Data is stored in Rusinkiewicz

coordinates[56]. The MERL database’s primary advantage is that the raw BRDF data

is available without any model fitting error for several materials.

On the other hand, the NEF Database contains a library of over 400 materials,

many with DHRs measured from 400 nm to 12 µm. BRDF data for these materi-

als is measured at up to five wavelengths: 0.325, 0.6328, 1.06, 3.39, and 10.6 µm[72].

Unlike the MERL database, the NEF database only stores fit parameters for the Mod-

ified Beard Maxwell model; it does not contain the actual BRDF measurement data.

However, this database measures the BRDF in the IR, and uses laser illumination

to obtain a much higher precision BRDF measurement not possible using Matusik’s

method.

A free online database posted by Cornell contains a few materials with BRDFs

measured from 400 nm to 700 nm with 10 nm spacing, using a spherical reflection sur-

face and a monochrometer [15, 41]. Corresponding index of refraction measurements

(for Fresnel scaling), DHR (for linear interpolation), and error bounds were not in-

cluded, so it is difficult to decouple the Fresnel effect from other BRDF effects for this

data and discern the accuracy of the measurements. It is also not possible to confirm

or reject the linear wavelength scaling suggested by Crockett[16] and Montanaro[44]

using this data due to the absence of DHR calculations. Due to these limitations,

this dataset was not examined in this dissertation.

NEF Analysis.

The analysis in this section is, in part, contained in a paper presented at the SPIE

Defense, Sensing, and Security Conference 2015; see [7]. To investigate the MWIR

and LWIR behavior of the BRDF, the NEF database was used[46]. Recall that in

the IR, the BRDF for the NEF database is measured at 1.06 µm, 3.39 µm, and 10.6
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µm; this data is then fit to a modified Beard-Maxwell model similar to the model

discussed in Section 3.5, but with the bi-static scan distribution function in place of

the Cauchy distribution function. (The NEF database includes parameters specifying

the shape of the bi-static scan.) To determine the accuracy of wavelength scaling,

the BRDF values at 1.06 µm and 10.6 µm were used to predict the BRDF value at

3.39 µm. A MATLAB R© script from Dr. Joseph Meola (AFRL Sensors Directorate)

was used to obtain the BRDF values from the NEF database for a specified material

and geometry. For all materials analyzed, the input angle was chosen to be θi = 30◦

and φi = 0. The output angle was chosen to be in-plane forward scatter (φs = 180◦)

for 1◦ increments of θs.

This process was performed for Infragold R© (NEF Material ID 0494UUUSTD),

which is a fairly diffuse material in the IR commonly used for calibration. The BRDF

for all three IR wavelengths, and for a linear interpolation to 3.39 µm from 1.06

µm and 10.6 µm using Equation (93) with fixed scaling, is shown in Figure 12 for

θi = 30◦. The relative error of the linear interpolation using Equation (94) is shown

in Figure 13. For this very diffuse material without much variation at the three

measured wavelengths, the relative error is within 10% at all points, and is generally

within 5% at most points.

To determine the behavior for a more specular material, the process was repeated

for aluminum (NEF Material ID 0539UUUALM). The BRDFs are plotted in Figure

14 (note the logarithmic scale), with the relative error plotted in Figure 15. For

aluminum with an incident angle of θi = 30◦, it is clear the results are not good at

all. The relative error of linear interpolation in predicting the BRDF at 3.39 µm is

nearly always above 100%, and is frequently above 300%. This result suggests that

the linear scaling may also fail significantly at points between 3.39 µm and 10.6 µm,

justifying further investigation of the BRDF variation as a function of wavelength.
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Figure 12. BRDFs for Infragold from NEF at 1.06 µm , 3.39 µm , and 10.6 µm. The
linearly scaled BRDF to 3.39 µm using Equation (93) (fixed scaling) is also shown

Figure 13. Relative error of the linearly scaled Infragold BRDF to 3.39 µm using 1.06
µm and 10.6 µm BRDF data using Equation (93) (fixed scaling)
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Figure 14. In plane BRDFs for aluminum from NEF at 1.06 µm , 3.39 µm , and 10.6
µm. The linearly scaled BRDF to 3.39 µm using Equation (93) (fixed scaling) is also
shown

Figure 15. Relative error of the linearly scaled aluminum BRDF to 3.39 µm using 1.06
µm and 10.6 µm BRDF data using Equation (93) (fixed scaling)
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Table 3.2. Summary of Modified Cauchy Distribution fits for NEF Materials

Material ID λ (µm) B s R2

0886UUUPNT 3.39 0.1141 0.2051 0.9966
10.6 0.0924 0.1239 0.9999

0404UUUWOD 3.39 0.0595 0.1413 0.9844
10.6 0.0392 0.0898 0.9775

R2 represents quality of fit (closer to 1 is better)

Another preliminary analysis of NEF data was performed. As mentioned earlier,

the NEF data uses a bi-static scan for the microfacet normal distribution function,

although Modified Beard-Maxwell sometimes uses a modified Cauchy distribution

Dbm(θh) given by Equation (46) instead. To observe whether there exists a potential

wavelength dependence of the microfacet surface normal distribution parameter, a

least squares fit of the bi-static scan data to the modified Cauchy distribution was

performed for the same material at 3.39 µm and 10.6 µm.

First, this analysis was performed on the NEF material ID 0886UUUPNT (white,

weathered paint on aluminum). This material was chosen because the bi-static scan

fit well to the modified Cauchy distribution at both 3.39 µm and 10.6 µm. This

analysis was then repeated again for NEF material ID 0404UUUWOD (weathered

bare pine lumber). The fitting results are presented in Table 3.2.

As can be seen in the table, the amplitude B does not appear to change signifi-

cantly for either wavelength; however, the specular lobe width parameter s reduces

to about 60% of its value at 10.6 µm. This suggests that one area where a signif-

icant wavelength scaling may appear is in the distribution function. Although the

microfacet orientation is not changing with wavelength, the longer wavelengths are

sampling a larger area of the surface for a single wave, and thus are closer to the global

surface normal orientation. Therefore, one key area to observe changes in wavelength

while conducting this spectral BRDF analysis is the microfacet distribution function

D(θh).
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Additionally, by observing model parameters in the NEF database, it became

obvious that the NEF data at times violates fundamental microfacet model assump-

tions to obtain the best fit. Since the modified Beard-Maxwell model is a microfacet

distribution that ignores diffraction and interference effects, all terms in the model

should theoretically be non-negative. However, the NEF contains negative entries for

volumetric scattering parameters at 10.6 µm for both of the above materials (0886UU-

UPNT and 0404UUUWOD). This does not fit with a geometric optics (microfacet)

interpretation of the BRDF.

Unfortunately, with the NEF database, it is not possible to discern how much of

the error is due to fitting to the chosen modified Beard-Maxwell BRDF model and how

much of the error is due to actual measured BRDF variation, as the measured data

was not included with the database. Additionally, the complex index of refraction

is not known independently as a function of wavelength (except as it was fit to the

BRDF model as a fitting parameter), so it is not possible to determine how much of

this variation is due to Fresnel variation with different microfacet normal angles θd.

MERL Analysis.

The second technique used to investigate BRDF changes with wavelength from

existing data was from the MERL database. Recall the MERL database contains

densely measured red, green, and blue channel BRDF data. Although the red, green,

and blue data is broadband, the wavelength spacing is much closer than with the

NEF IR data. Thus, the MERL data has two primary advantages over the NEF

dataset for a preliminary analysis: wavelength spacing between known BRDF values

is relatively close, and the data is not fit to any model. Its primary disadvantages are:

wavelength collection is broadband, wavelength ranges are in the visible spectrum,

and the complex index of refraction for each material is unknown. Thus, the MERL
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database is a reasonable complement to the NEF database for a preliminary analysis

but cannot be used for the direct analysis required by this research.

The simple HDR scaling in Equation (92) was investigated using materials from

the MERL database with an incident angle of θi = 30◦ (recall by convention for

all isotropic materials φi = 0). A MATLAB R© and C++ wrapper was created to

read in MERL data and calculate the DHR from the MERL data, and a trilinear

interpolation routine was used to interpolate between data points. Then, the HDR

scaling for each scattered angle in Equation (92) was computed. The BRDF values

for all channels of brass are plotted in Figure 16 (note the scale is logarithmic), and

the HDR values for brass are plotted in Figure 17.

Then, the scalar interpolation routine was used twice. First, Equation (92) was

used to estimate the scaled red BRDF based on the green BRDF and the scaled

HDR from green to red, resulting in an estimate for the red BRDF. Then, the same

equation was used to estimate the scaled blue BRDF based on the green BRDF and

the scaled HDR from green to blue, resulting in an estimate for the blue BRDF.

The results are plotted in Figure 18 for in-plane data, using the relative error of the

estimated BRDF to the actual BRDF at each scattered angle.

As can be seen from Figure 18, even ignoring the specular peak, the relative error

for brass is still fairly high, as much as 30% in either direction. The DHR scales

correctly (ie, the error is about equal in the positive and negative direction), but

changes to the shape of the BRDF do not occur by the overall scaling.

This process was then repeated for a relatively Lambertian surface, the ”gold-

paint.binary” file in the MERL database. The BRDFs for the red, green, and blue

channels are plotted in Figure 19 (note the scale is not logarithmic), HDR in Figure

20, and relative error in scaling with Equation (92) is shown in Figure 21. The relative

error for the green to red conversion is generally about 10%, while the relative error
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for the green to blue conversion is about double. These results also show substantial

relative error, suggesting that this scaling may not result in accurate values for the

BRDF. The error does not follow a similar pattern as with the previous brass analysis,

suggesting the error may not be systemic. This suggests a different technique may be

better suited for wavelength scaling.

Figure 16. BRDF from MERL brass file for θi = 30◦ and for the red, green, and blue
channels

Examining the linear scaling of BRDF is somewhat more difficult using MERL

data, as the MERL data is broadband over the red, green, and blue channels. To

perform a preliminary investigation, it was necessary to assign wavelength values to

each channel. A typical CCD camera spectral response curve has a peak in the red,

green, and blue channels, but the peak is broadband, not at a narrow wavelength.

Since camera specifications used to take the MERL data were not provided, notional

values of 610 nm, 540 nm, and 460 nm are assigned to the red, green, and blue

channels. Then the red and blue channel BRDF data is used as truth data, attempting

to obtain the green BRDF using Equation (93). The relative error between the actual
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Figure 17. HDR from MERL brass file for the red, green, and blue channels

Figure 18. Relative error of MERL brass file when scaling green BRDF to red BRDF,
and when scaling green BRDF to blue BRDF, using Equation (92)
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Figure 19. BRDF from MERL gold-paint file for θi = 30◦ and for the red, green, and
blue channels

Figure 20. HDR from MERL gold-paint file for the red, green, and blue channels
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Figure 21. Relative error of MERL gold-paint file when scaling green BRDF to red
BRDF, and when scaling green BRDF to blue BRDF, using Equation (92)

Figure 22. Relative error of MERL brass file when scaling red/blue BRDF to green
BRDF, using Equation (93) (variable scaling)

91



Figure 23. Relative error of MERL brass file when scaling red/blue BRDF to green
BRDF, using Equation (93) (fixed scaling)

Figure 24. Relative error of MERL gold-paint file when scaling red/blue BRDF to
green BRDF, using Equation (93) (variable scaling)
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Figure 25. Relative error of MERL gold-paint file when scaling red/blue BRDF to
green BRDF, using Equation (93) (fixed scaling)

BRDF and the linear estimate of the BRDF is then plotted in Figures 22 and 23 for

brass (relative and fixed scaling). For gold-paint results, see Figures 24 and 25.

In both cases, the error is reduced when using linear scaling by having finely-

measured BRDF data, but it is still present. For a more specular material such as

brass, there is still significant error around the specular lobe regardless of whether

fixed or variable linear scaling is used; relative error at the specular lobe is especially

concerning, as the specular lobe can be several orders of magnitude higher in BRDF

value, and thus results in a significantly large absolute error. In general, for both

materials, the relative error is still ±10% for either fixed or variable scaling even if

the specular point is ignored. The error also tends to be higher (in absolute value) at

around specular reflection, suggesting the shape of the specular lobe may not scale

linearly. This result is for a relatively dense measurement of BRDF in 100 nm incre-

ments, where the two known BRDFs are separated by only 200 nm in wavelength; in

the MWIR and LWIR, this error is expected to be amplified due to the extremely large
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separation in wavelength between the 3.39 µm and 10.6 µm BRDF measurements

typical in this region.

Potential Closed-Form Wavelength Scaling.

From this investigation, it appears a more accurate nonlinear wavelength scaling

may be desirable. In [64], a proposed BRDF distribution function scaling based on a

modified form of the Ward-Duer BRDF was specified. In this proposed scaling, the

Gaussian width parameter σg was revised to scale with wavelength, with this scaling

given as

σg =
σ0
λ

(95)

where σ0 is an actual surface roughness. The results agreed with DHR measurements

that were made for that paper, but since DHR is an integrated BRDF, this did

not show whether the BRDF is accurately modeled by this scaling factor. However,

this paper suggested a possible modification that is indicative of what was originally

thought to be a viable closed-form approximation to the BRDF.

These observations from my MERL and NEF preliminary analysis, along with the

suggested modification by Su, motivated measurement of the BRDF of a handful of

materials at multiple wavelengths in the MWIR and LWIR, to be discussed in Chap-

ters IV and V. These observations motivated devoting particular attention to changes

in the specular lobe. Measurements could then be fitted to a BRDF model, and the λ

dependence of the width parameter could then be extracted and added to the model.

After attempting that approach, it was determined that there are fundamental flaws

with microfacet models. Therefore, prior to concluding this chapter, the background

for scalar wave optics BRDF models is presented, as it is important for theoretical

developments presented in Chapter VI.
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3.8 Scalar Wave Optics BRDF Models

Another class of BRDF models is scalar (non-polarimetric) BRDF models based

on wave optics; that is, models that include diffraction and interference. The primary

advantage of this class of models is that a more complete description of the BRDF

is present, since diffraction is included in the derivation of the model. However, a

key drawback of these models is that, for an arbitrary surface, the models quickly be-

come computationally cumbersome and generally do not result in a closed-form model.

Scalar wave optics models are, therefore, not directly useful for a resource-constrained

problem like HSRS. However, as is observed later in the dissertation, analysis of the

wavelength scaling of experimental BRDF data uncovered a shortcoming in the micro-

facet BRDF model that can be explained using scalar wave optics models. Portions

of this section were taken from the background in [10].

Several different physical optics models have been developed, deriving from the

Kirchhoff tangent plane approximation (for a wide variety of surfaces at paraxial an-

gles), small perturbation approximation (for optically smooth surfaces at all angles),

and other unifying methods (which attempt to join the two); for a survey of over 30

of these models, see Elfouhaily [20]. More recently, a method for estimating surface

statistics using the tangent plane approximation and assuming a Gaussian distribu-

tion of surface properties was developed in [12]. Although this method did not include

out-of-plane scatter and assumed s-polarized incident light, its success in predicting

surface statistics lends credence to using a physical optics model based on the tangent

plane approximation.

The Beckmann-Kirchhoff (BK) scattering model was formulated in 1963 [2]. Sim-

ilar to [12], the BK model uses the tangent plane approximation and assumes a

Gaussian distribution of surface properties. However, the original BK theory was

formulated prior to formal definition of the BRDF in 1977 [48]. This BK model was
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modified when the linear systems diffraction BRDF theory was generalized to all in-

cident and scattered angles, as well as for a variety of surfaces, by Krywonos [38].

Linear systems diffraction BRDF theory was originally formulated for paraxial reflec-

tion in the Harvey-Shack BRDF model, then was extended to arbitrary angles in the

Generalized Harvey-Shack (GHS) BRDF model [30, 29, 38]. The GHS BRDF model

developed by Krywonos does not possess a known closed-form solution in general. It

was derived from a linear systems (Fourier theory) approach to scalar wave optics to

calculate scattering off a surface. GHS theory is more physically rigorous, but is more

computationally intensive and unfortunately, this method fails to distinguish between

scattering due to surface reflection versus scattering due to volumetric effects. In both

cases, the surface is treated as adding an overall phase offset, regardless of whether

the scatter is due to the surface or due to impurities in the material. Krywonos also

proposed MBK BRDF theory that forms the basis of comparison for this dissertation,

and which is equal to his GHS theory in the limit of either a polished or very rough

surface [30, 37]. GHS theory has been used to accurately predict surface statistics in

studies by Stover [63] and Schröder [60].

The GHS model is quite complex in its general form, and thus not suitable for

remote sensing applications. In calculating the BRDF using GHS, it is necessary to

define the reflecting surface, then perform a Fourier tranform for each incident and

scattered angle pair, and to compute a relevant surface roughness that involves a

double integral expression that does not, in general, evaluate in closed-form. Another

numerical double integration is required to ensure conservation of energy[37, 7]. Since

hyperspectral remote sensing is already tasked with the difficult objective of back-

ing out atmospheric parameters from an observed scene, adding such computational

complexity to describe optical scatter would not be an easy task. This is why the

microfacet model was initially examined instead of a linear systems model. However,
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in Chapter V, experimental measurements performed for this work show that micro-

facet models do not capture fundamental spectral changes in the form of the BRDF.

Therefore, it is important to introduce the GHS BRDF here, and then compare it to

the microfacet model in Chapter VI.

The GHS BRDF is derived as an extension to Harvey-Shack theory. It is based

on the Rayleigh-Sommerfeld diffraction integral, which is derived from Maxwell’s

Equations presented in Equation (6) for a homogeneous, isotropic media. Under

these conditions, the vector field components are separable, resulting in the scalar

form of the Helmholtz equation. By applying the physical optics approximation to

a diffracting scenario, the Rayleigh-Sommerfeld equation results, commonly found in

Fourier optics texts such as Goodman: [24, 37]

U(x̂, ŷ, ẑ) =

∫ ∞

−∞

∫ ∞

−∞

Uo(x̂
′, ŷ′; 0)

(

1

2πℓ̂
− i

)

ẑ

ℓ̂

exp(i2πℓ̂)

ℓ̂
dx̂′ dŷ′, (96)

where Uo represents the electromagnetic field at the diffracting plane (z = 0), and ℓ̂

is given as

ℓ̂2 = (x̂− x̂′)2 + (ŷ − ŷ′)2 + ẑ2, (97)

where (x′, y′, 0) is a Cartesian point in the diffracting plane, assumed to be illuminated

by a plane wave, and (x, y, z) is the Cartesian point at which the field is to be

computed. In these prior two equations, the hat represents length relative to the

wavelength of light (for example, x̂ = x/λ). The Rayleigh-Sommerfeld equation

can be thought of as a mathematical expression of the Huygens wavelet principle,

where the spherical waves emitted by the diffracting plane at (x′, y′, 0) are integrated

together to describe the resulting wave at the observation point (x, y, z).

In 1976, Harvey and Shack [26] developed a theory based on scalar wave optics.
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The term Uo is essentially treated as a phase screen that induces a phase shift due to

the surface scatter rather than due to an optic. To define the phase induced by the

surface, this theory defined a surface transfer function, and the Fourier transform of

this surface transfer function resulted in a scattered radiance distribution known as the

angle spread function (ASF) that is related to the BRDF. The ASF is analogous to the

modulation transfer function in traditional linear systems scalar wave optics texts such

as [24]. However, this original Harvey-Shack theory was derived using the paraxial

approximation rather than the Rayleigh-Sommerfeld integral expression above, and

did not conserve energy. These problems were fixed somewhat by development of a

modified Harvey-Shack theory, but still was not accurate for all surfaces and angles.

In 2006, Krywonos [37] extended this theory to arbitrary incident and scattered

angles via the GHS model. Then, the GHS model is compared to the Modified

Beckmann-Kirchhoff (MBK) model, which is a modification to the original Beckmann-

Kirchhoff (BK) optical scatter model that was proposed by Krywonos in [37, 38, 30].

This MBK model is equal to the GHS model for surfaces that obey Gaussian statistics,

and for incident and scattered angles that are not large. It should be noted that GHS

theory, unlike microfacet theory, treats both surface and volumetric scatter as adding

a phase function to the electromagnetic field; GHS does not distinguish between

surface scatter and volumetric scatter. This could potentially lead to problems in

identification of materials such as paints, where the scatter contains both surface and

volumetric elements. Prior to developing these theories in more depth, some common

terms are presented here that appear in both GHS and MBK theory.

Angular Dependence.

In GHS and MBK theory, the BRDF is calculated in direction cosine space (α, β)

instead of spherical space (θ,φ). (γ is also included in direction cosine space, but is

98



related to α and β via the relationship γ2 = 1 − α2 − β2. Similarly, r is present in

spherical coordinates, but the radial direction is normalized to a value of 1.) Direction

cosine space is related to the wave vector ~k but retains only the angular dependence

of that vector; it is defined as

∆α = αs − αi = λνy = sin θs sin(φs − π)

∆β = βs − βi = λνx = sin θs cos(φs − π)− sin θi,

(98)

where, as before, the subscript s refers to scattered angles and the subscript i refers

to incident angles. The extra π terms arise from a difference in defining the φ = 0 lo-

cation in the microfacet model as compared to the linear systems model. For in-plane

forward scatter, φs = π in all models as presented in this dissertation (backscatter is

φs = 0); however, in-plane forward scatter data is represented by φs = 0 in some lin-

ear systems papers [29, 38]. For isotropic samples, the angular dependence simplifies

to

η2r = (∆α)2 + (∆β)2 = sin2 θi + sin2 θs + 2 sin θi sin θs cosφs =

(

λνxy
2π

)2

, (99)

where νr is the notation used by Beckmann in the original formulation of Beckmann-

Kirchhoff theory [2]. ηr represents the angular extent in direction cosine space. (For

an isotropic surface, angular extent in α or β is treated similarly by computing the

Euclidian distance.) νxy = kηr simply scales direction cosine space by the magnitude

of the wave vector, k. In the literature prior to this work, the connection between lin-

ear systems direction cosine space given above and the microfacet coordinate system

defined by Equations (34) and (35) was not examined; this connection is developed

in Chapter VI.
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Polarization Factor.

Another significant difference between scalar wave optics theory and linear systems

theory is the use of the polarization factor Q instead of the standard Fresnel equation

F . Q is a perturbation of Fresnel reflectance, which was defined in Equation (22). In

deriving the Fresnel equation, an infinitely smooth surface is assumed. The derivation

of the polarization factor, Q, perturbs that solution for a rougher surface. It is

significantly more complex than F , but still possesses a closed-form solution given

most clearly by Stover in [62] by the following five equations:

Qss =

∣

∣

∣

∣

∣

(ñ2 − 1) cos(φs − π)

(cos θi +
√

ñ2 − sin2 θi)(cos θs +
√

ñ2 − sin2 θs)

∣

∣

∣

∣

∣

2

(100)

Qsp =

∣

∣

∣

∣

∣

(ñ2 − 1)
√

ñ2 − sin2 θs sin(φs − π)

(cos θi +
√

ñ2 − sin2 θi)(ñ2 cos θs +
√

ñ2 − sin2 θs)

∣

∣

∣

∣

∣

2
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Qps =

∣

∣

∣

∣

∣

(ñ2 − 1)
√

ñ2 − sin2 θi sin(φs − π)

(ñ2 cos θi +
√

ñ2 − sin2 θi)(cos θs +
√

ñ2 − sin2 θs)

∣

∣

∣

∣

∣

2

(102)

Qpp =

∣

∣

∣

∣

∣

∣

(ñ2 − 1)
(

√

ñ2 − sin2 θi
√

ñ2 − sin2 θs cos(φs − π)− ñ2 sin θi sin θs

)

(ñ2 cos θi +
√

ñ2 − sin2 θi)(ñ2 cos θs +
√

ñ2 − sin2 θs)

∣

∣

∣

∣

∣

∣

2

(103)

Q = Qss +Qsp +Qps +Qpp (104)

The factors of π appearing here again are due to a difference in defining the φ = 0

location. (In this work, φ = 0 represents backscatter, as is consistent with the previous

section defining microfacet models; however, in the derivation of Q, φ = 0 represents

forward scatter.) For s-polarized light incident on a surface, Qs = Qss + Qsp. For p-

polarized light incident on a surface, Qp = Qps+Qpp. For unpolarized light incident on

a surface, Q = Qs+Qp. If θi = θs and φs = 180◦, the equations reduce to the standard

Fresnel equations for s and p polarization given in Equation (21). Additionally, for

in-plane scattering, Qsp = Qps = 0.
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In [62], Stover provides a few cases in which the Q term may be simplified, but

does not provide a general approximation for Q relative to F . Stover notes that the

Qss term is directly related to the Fresnel s polarization term Fs. He also provides an

approximate reduction for all terms that only applies for highly reflective materials.

Prior to this work, it was not clear how this Q term related to the microfacet model,

or to the Fresnel equation. In Chapter VI, a relationship is developed, providing

another key element in being able to translate between microfacet and scalar wave

optics models, and forming one of the key contributions of this dissertation.

Now that the basic terms common to the MBK and GHS models have been de-

scribed, the basis for the original Beckmann-Kirchhoff optical scatter model is pre-

sented. After describing the derivation of the BK model, the GHS and MBK model

relationships are discussed in further detail.

Original Beckmann-Kirchhoff BRDF Model.

BK theory was developed in 1963 [2], prior to standardized definition of the BRDF

by Nicodemus in 1977 [48]. For this reason, its development is more clearly presented

in [37]; highlights of that description are presented here.

BK theory makes use of the Helmholtz integral expression to estimate the electric

field at a scattered point P . To make use of the Helmholtz integral, boundary con-

ditions must be specified; the tangent plane approximation is used to estimate these

boundary conditions as [2, 37]

E(S) = (1 +R)Einc
(

∂E

∂n

)

S

= (1− R)Einc(~k · ~n),
(105)

where ~n is the surface normal, R is the local reflection coefficient, E(S) is the electric

field at the surface point S, and Einc is the incident electric field. Recall from the
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basic electromagnetism theory developed at the beginning of this chapter that ~k is

the wave vector.

Beckmann then derives a scattering coefficient that relates the electric field scat-

tered off a realistic surface (Es) to the electric field scattered off a polished surface

(Eo), given as [2, 37]

ρbk = Es/Eo (106)

From scatter off a polished surface, a geometric term Fbk is derived, given as [2, 37]

F 2
bk =

(

1 + (cos θi cos θs + sin θi sin θs cosφs)

cos θi(cos θi + cos θs)

)2

. (107)

This term arises from calculation of the electric field for a perfectly reflecting surface,

and assuming the Fraunhofer approximation. However, since BK theory predates the

definition of the BRDF, its role in computing the BRDF was not well-established in

the literature; this connection is developed in Chapter VI.

Beckmann then derived an expression for 〈ρbkρ∗bk〉, where ∗ represents complex

conjugate and 〈·〉 represents the mean value, given as [2, 37]

〈ρbkρ∗bk〉 = D{ρbk}+ 〈ρbk〉〈ρ∗bk〉. (108)

In this expression, D{ρbk} represents the diffusely scattered portion of the BRDF.

Beckmann then performs a series of statistical calculations to estimate D{ρbk}

for a realistic surface by assuming the surface statistics are governed by a Gaussian

distribution function and computing 〈ρbkρ∗bk〉 − 〈ρ∗bk〉; the result is [2, 37]

D{ρbk} =
πl2cF

2
bk exp(−g)
A

∞
∑

m=1

gm

m!m
exp

(

−
ν2xyl

2
c

4m

)

, (109)

where lc is the correlation length, and g is given as
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g(θi, θs) =

(

2πσs
λ

)2

(cos θi + cos θs)
2. (110)

σs represents the standard deviation of the surface height.

This expression is not useful when g is sufficiently large, as the series sum would

not converge rapidly. In that case, the surface is very rough (g ∝ σs/λ). Consider

Equation (108). For a very rough surface, an assumption is made that the specular

beam intensity is negligible, and thus 〈ρbk〉 ≈ 0. From this result, Beckmann showed

D{ρbk} is given as [2, 37]

D{ρbk} ≈ 〈ρbkρ∗bk〉 =
2πF 2

bk

A

∫ ∞

0

Jo(νxyτ) exp

[

−g
(

1− exp

(

τ 2

l2c

))]

τ dτ, (111)

where it is assumed that the surface height function h(x, y) is stationary, so that

the probability density depends only on the Euclidian distance τ between two points

on the surface. The exponential term arises from the characteristic function of the

Gaussian surface statistics, and Jo represents the Bessel J function of order 0. Since

g >> 1, this integral can be evaluated because it is only nonzero for τ ≈ 0, which

enables a Taylor series expansion of exp(τ 2/l2c ) function. Keeping only the first two

terms of the Taylor series expansion, the integral is then evaluated, resulting in [2, 37]

D{ρbk} =
πF 2

bkl
2
c

Ag
exp

[

−
ν2xyl

2
c

4g

]

(112)

Unfortuantely, the relationship between D{ρbk} in the BK model and the BRDF

was not well established, since this Beckmann scattering theory predates the formal

definition of the BRDF, and it is clear that F 2
bk does not obey Helmholtz reciprocity.

Krywonos resolved the first issue by modifying the BK theory, as is discussed next.

The second issue, relating to F 2
bk not obeying Helmholtz reciprocity and not having a
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clearly defined purpose in the context of BRDF theory, is addressed in Chapter VI.

Modified Beckmann-Kirchhoff BRDF Model.

The BK scattering model described in the last section was formulated in 1963 [2],

prior to the formal definition of the BRDF by Nicodemus in 1977 [48], and should not

be confused as a BRDF model for this reason. This BK model was modified when the

linear systems diffraction BRDF theory was generalized to all incident and scattered

angles, as well as for a variety of surfaces, by Krywonos [38, 29, 30].

The MBK formulation presented in Equation (113) is the angle spread function

(ASF) fa, which is related to the radiance L; the ASF is equal to the BRDF if

F = 1 (total Fresnel reflectance). Assuming the surface statistics follow a Gaussian

autocovariance, and taking into account the 1/λ2 term present in MBK as shown in

[37], the ASF is calculated as

fa =
πKl2c
λ2

exp(−g)
∞
∑

m=1

gm

m!m
exp

(

−
ν2xyl

2
c

4m

)

, (113)

where K is a renormalization term that ensures conservation of energy, lc is the

correlation length of the surface, and g is given by Equation (110). Similar to BK

theory, these modifications can additionally be applied to the very rough surface

(g >> 1) case. This expression is given in Chapter VI, where the MBK analysis is

most relevant in this dissertation.

When written in terms of scattered radiance Ls, K is defined as [30, 37, 38]

K(βi) =

∫∞

−∞

∫∞

−∞
Ls(αs, βs − βi) dβs dαs

∫ 1

−1

∫

√
1−α2

s

−
√

1−α2
s

Ls(αs, βs − βi) dβs dαs

. (114)

Ls ≥ 0 everywhere, so K ≥ 1 for all incident angles. Physically, K is a unitless

quantity that ensures energy is not lost to evanescent waves by redistributing energy
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that may fall outside the unit circle of real space defined by the direction cosines.

For some BRDF applications, this term can be problematic to compute because it

depends on knowing the surface distribution shape, and involves computation of a

double integral expression that does not possess an analytic solution for most surface

distributions.

As can be seen from this definition of the MBK model, it is not clear how to

relate this to the microfacet model. One of the contributions of this dissertation

toward development of a basis for a wavelength-dependent, closed-form BRDF model

is providing a mechanism to translate between this scalar wave optics BRDF model

and the microfacet BRDF model. This contribution is detailed in Chapter VI.
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IV. Measurement Process

In this chapter, BRDF measurement theory and equipment are discussed. The

procedure to measure BRDF data in this dissertation is then be described in detail.

Finally, an uncertainty analysis is performed.

4.1 Measuring Polarimetric BRDF

Unlike measuring HDR or using ellipsometry to estimate the complex index of

refraction, for some materials there is too little signal outside the specular lobe to

measure BRDF by simply illuminating over multiple wavelengths and sending the

results to a spectrometer. Instead, a narrow band of radiation is desirable to measure

a larger dynamic range of the BRDF. As discussed in Chapter III, BRDF values may

vary by several orders of magnitude, in the range [0,∞). Consider, for example,

a specular BRDF sample. Such a measurement could be easily performed at the

specular peak, but to obtain the shape of the specular lobe and to obtain enough signal

in the wings of the BRDF is a difficult task not encountered when measuring HDR

or ñ. Thus, measuring BRDF requires a more careful measurement. For accurate

BRDF measurements in the IR, laser illumination is typically used because it is

highly directional illumination over a very narrow spectral band.

To measure BRDF, AFIT has a modified Complete Angle Scatter Instrument

(CASI R©) from Schmitt Measurement Systems (SMS), a division of Schmitt Indus-

tries, Inc. To manage the difficulties of measuring BRDF outlined above, this system

uses a chopper and lock-in amplifier. This process reduces the effects of self-emission

on the measured signal, as the incident laser beam is chopped at a known frequency

while the self-emissive component from the sample is not. Furthermore, the signal

is amplified at multiple possible gain levels (depending on wavelength and detector),

106



allowing for measurement of a signal over several orders of magnitude. Additionally, a

filter wheel with a known neutral density value (determined from experimental mea-

surement at each wavelength in which it was used) controls the incident irradiance

on the sample.

The basic CASI R© system uses a sample holder mounted at the center of a go-

niometer. The sample may then be illuminated by laser light at a certain wavelength

and incident angle, while the goniometer arm scans the detector to obtain in-plane

data (φs = 0◦ or φs = 180◦). Out-of-plane data (φs 6= 0 and φs 6= 180◦) may also be

collected by tipping the sample, although this work was focused only on collecting

in-plane BRDF data.

AFIT modified this system to be a Dual Rotating Retarder (DRR) polarimetric

CASI R© system, as shown in Figure 26. In the DRR configuration, the CASI R© system

supports a generating polarizer prior to illuminating the source, and an analyzing po-

larizer at the detector (after illuminating the source). Similarly, a generating wave-

plate and analyzing waveplate may be placed prior to the sample and prior to the

detector. This allows for the full Mueller matrix to be obtained.[23] By rotating the

analyzing retarder at 5x the frequency of the generating retarder, and rotating the

generating retarder through 180◦ rotation, a Fourier decomposition can be used to

obtain the entire 4x4 Mueller matrix, including circular polarization[23]. Vap showed

through condition number analysis and experiment that, for imperfect equipment

found in the DRR CASI R© system, it is ideal to use an angular rotation of 37.5◦ for

the analyzing retarder and 7.5◦ for the generating retarder if more than 18 mea-

surements are used. (The W-matrix method, an alternate way to compute the fully

polarimetric BRDF, may also be used, as will be described in detail later; Vap showed

that for the W-matrix method, if fewer than 18 measurements are used, an analyzing

retarder rotation of 34◦ and a generating retarder rotation of 26◦ is the best rota-
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Figure 26. Diagram of AFIT modified CASI layout, taken from a paper by Vap[69]

tion ratio to apply.) Although in theory 16 measurements are required to determine

the full Mueller matrix, in general it is preferable to over-determine the system and

perform a least squares analysis to reduce experimental uncertainty; thus, in general

the ideal ratio to use is 37.5◦ for the analyzing retarder and 7.5◦ for the generating

retarder[69].

The AFIT CASI R© comes with a HeNe laser at 3.39 µm and a CO2 laser at 10.6

µm; it has further been modified to use Quantum Cascade Lasers (QCLs), providing

tunable output within the MWIR and LWIR, from 4.3 to 9.7 µm. For details, see

[68]; a figure illustrating wavelength range is reproduced in Figure 27. The QCLs

are tunable to within 0.2% of the desired wavelength value[67]. In this dissertation,

obtaining BRDF data with the QCL that is in the 8.06 – 9.71 µm band was found

to be too difficult, primarily due to challenges in laser alignment to prepare for the

BRDF measurement. (Note that the QCL in that wavelength band is pulsed, with a

weak average power output, which is why laser alignment was found to be difficult.

All other QCLs were used in continuous wavelength mode.)

When switching laser wavelengths (even for the same QCL), laser realignment and
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Figure 27. QCL wavelengths available for use in the AFIT CASI R©.

calibration is performed. After aligning the laser with the detector, a trial run with

no sample is conducted to ensure the identity Mueller matrix is obtained. This result

quantifies the error in each element of the measurement and validates measurement.

Typical usage of this system for the full 4x4 Mueller matrix has shown that 50

scans of the entire in-plane data are typically desired to obtain the full Mueller

matrix[69]. These additional scans beyond the minimum required are necessary to

compensate for alignment errors and imperfections in the polarizers and wave plates,

using a Fourier analysis with error compensation as described by Goldstein[23], to be

discussed in more depth below. Additionally, this process was repeated at least three

times per incident angle to average out noise in the data. Finally, multiple incident

angles were collected to account for variation in ω̂i.

For the MWIR, a Teledyne-Judson InSb detector is used; for the LWIR, a Teledyne-

Judson HgCdTe (MCT) detector is used. Both detectors were cooled to 77 K using

liquid nitrogen. Polarizers and waveplates are also chosen based upon wavelength of

the laser source. For lasers in the LWIR that would otherwise saturate the detector,
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a filter wheel was used to ensure the signal stayed in the linear regime of the detector.

A variable aperture with four different diameters (300 µm, 1.100 mm, 4.075 mm,

and 13.85 mm) is located 0.5 m from the sample. These aperture sizes correspond to

angular step sizes of 0.011◦, 0.042◦, 0.156◦, and 0.529◦, respectively. The optic behind

the variable aperture is used to focus light onto the detector. The CASI R© system

selects the aperture based on how close it is to the specular lobe. The focusing optic

at the detector is positioned 50± 0.5 cm away from the sample.

A typical measurement of a single material may take several days for the full 4x4

Mueller matrix, not including calibration or realignment. More specular materials

tend to take longer, as they tend to have lower BRDF values at off-specular positions,

which comprise most of the measurement space.

DRR Data Analysis.

To obtain the Mueller matrix from the DRR polarimetric setup described above,

two primary approaches are used: Fourier analysis and W matrix method. These

methods are detailed in [23]. Each method will be discussed in turn.

W Matrix Method.

In the W matrix method, the Mueller matrix is restructured as a 16-element vector

of unknowns. As long as waveplate and polarizer orientations are chosen such that

each measurement is linearly independent, it is possible to measure the full Mueller

matrix with at least 16 data points. (A 5:1 ratio between the generating and analyzing

waveplate rotations is not required, as will be the case for the equations derived by

Goldstein relating the Fourier method to the Mueller matrix, to be discussed later.)

Generally, more than 16 data points are collected and a least squares pseudoinverse is

used to obtain the Mueller matrix using well-established linear algebra techniques[23].
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For the W matrix method, it is necessary to account for imperfections in the equip-

ment and alignment process. The Mueller matrix for an imperfect linear horizontal

polarizer with transmission τ and diattenuation D is

↔

P =
τ

2



















1 D 0 0

D 1 0 0

0 0
√
1−D2 0

0 0 0
√
1−D2



















(115)

The Mueller matrix of a waveplate oriented horizontally with retardance δ in

addition to transmissivity τ and diattenuation D is

↔

V = τ



















1 D 0 0

D 1 0 0

0 0
√
1−D2 cos δ

√
1−D2 sin δ

0 0 −
√
1−D2 sin δ

√
1−D2 cos δ



















(116)

These Mueller matrices assume horizontal alignment, but they can be rotated to

any arbitrary alignment. Additionally, a rotation matrix could be used to represent

misalignment errors. The Mueller matrix of a rotation about the optic axis is

↔

R(θ) =



















1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1



















(117)

To account for misalignment of a polarizer by an angle α, the proper equation is

as follows:

↔

Pe(α) =
↔

R(−α)
↔

P
↔

R(α) (118)
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Misalignment of a waveplate is handled analogously.

The ideal experimental setup of the DRR system is mathematically expressed as

follows:

~sm =
↔

Pa

↔

Va(θa)
↔

M
↔

Vg(θg)
↔

Pg~si

=
↔

A
↔

M~s

(119)

For measurement at the detector, only the s0 component of the Stokes vector ~sm is

measured. The subscript a refers to the analyzer (after the sample) and the subscript

g refers to the generator (before the sample); the Mueller matrix
↔

M is the matrix of

the sample (the unknowns). The angles θa and θg indicate rotations of the analyzing

waveplate and generating waveplate, respectively.

Let ~m represent the unknown Mueller matrix
↔

M, but as a vector in column major

order. Since only the first row of the analyzer matrix
↔

A =
↔

Pa

↔

Va can possibly be

measured, Goldstein shows it is possible to construct a detected wi vector for the ith

measurement from
↔

A and generated vector incident on the sample ~s as [23]

~wi = [a11s1, a11s2, a11s3, a11s4, a21s1, ..., a44s4]
T (120)

Then, sm,i = ~wi · ~m. Since there are 16 unknowns, this measurement must be

completed at least 16 times; if more than 16 linearly independent measurements are

made, the pseudoinverse is used to perform least squares regression.

Fourier Analysis Method.

The other method commonly used to calculate the Mueller matrix in a DRR

system is the Fourier method. Using a generating waveplate rotation of θ and an

analyzing waveplate rotation of 5θ, a vector of measurements sm is obtained. (The 5:1

ratio is not strictly required to use the Fourier method, but the equations developed by
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Goldstein that are presented here relating the measurements to the Fourier coefficients

do require a 5:1 ratio.) Goldstein shows that, assuming ideal components, the Mueller

matrix can be formed from Fourier coefficients of the series. He defines the Fourier

series somewhat differently from standard conventional definitions, as follows:[23]

I

I0
=
a0
4

+
1

4

∞
∑

k=1

a2k cos(2kθ) + b2k sin(2kθ) (121)

where I is the measured intensity and I0 is the incident intensity. BRDF may be

used in place of intensity because the two are directly related. Recall that BRDF

is defined as exiting radiance divided by incident irradiance. Radiance is defined as

power per area, per solid angle; integrating the radiance over the area results in the

intensity. Since the area scattered by the sample does not change for a fixed incident

angle, the BRDF may be used in place of the intensity.

The expression given in Equation (121) is in contrast to a more traditional Fourier

series expansion a′k and b′k, given as

I

I0
=
a′0
2

+
∞
∑

k′=1

a′k′ cos(k
′θ) + b′k′ sin(k

′θ) (122)

By comparing Equations (121) and (122), one can obtain the relationship between

Goldstein’s Fourier decomposition and a traditional Fourier decomposition:

2a0 = a′0

4ak = a′2k′, k > 0

4bk = b′2k′

(123)

This comparison allows one to use traditional Fourier techniques (such as the Fast

Fourier Transform) to extract the Fourier coefficients, then translate those Fourier

coefficients to Goldstein’s notation. The Mueller matrix entries are then given by the
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following equation, where Goldstein’s notation for the coefficients is being used:[23]

m00 = a0 − a2 + a8 − a10 + a12

m01 = 2a2 − 2a8 − 2a12

m02 = 2b2 + 2b8 − 2b12

m03 = b1 − 2b11

m10 = −2a8 + 2a10 − 2a12

m11 = 4a8 + 4a12

m12 = −4b8 + 4b12

m13 = −2b9 + 2b11

m20 = −2b8 + 2b10 − 2b12

m21 = 4b8 + 4b12

m22 = 4a8 − 4a12

m23 = 2a9 − 2a11

m30 = b3 − b5 + b7

m31 = −2b3 − 2b7

m32 = −2a3 + 2a7

m33 = a6 − a4

(124)

In reality, experimental defects such as misalignment, diattenuation, and birefrin-

gence in the waveplate alter its properties. That said, one benefit of the Fourier

method is that a mechanism is provided to approximate all of these values from mea-

surement with no sample present. The equations become significantly more complex,

spanning several pages and are not reproduced here; see [23], pages 364-367, for the

equations. From these equations, misalignment errors for the two waveplates and the

analyzing polarizers are calculated relative to the generating polarizer. Additionally,
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waveplate retardances for both waveplates are estimated. The Mueller matrix en-

tries are then calculated with these correction terms. When including the correction

terms, the Fourier decomposition is required up to the 24th term (a12 and b12 in Gold-

stein’s notation); for this reason, discrete Fourier transform theory indicates at least

50 measurements are required to avoid Nyquist aliasing[49]. While this may seem

more cumbersome than the W matrix method, recall that this method gives not only

the Mueller matrix, but also the estimated errors in alignment, without rearranging

the generator and analyzer components. For this reason, the Fourier decomposition

is preferable to the W matrix for this application.

DRR Measurement Results.

Although most of the measurement results will be presented in the next chapter,

the DRR results motivate the procedure chosen for this BRDF study, so DRR results

are discussed here. The DRR method was used initially on a few samples to determine

the fully polarimetric characteristics of some of the surface reflecting samples.

First, the DRR was measured at λ = 4.4µm with no sample, obtaining

Mident =



















1.0000 −0.0080 0.0020 −0.0066

−0.0002 0.9940 −0.0062 −0.0051

−0.0018 0.0167 0.9971 0.0582

0.0023 −0.0123 0.0386 0.9781



















. (125)

The identity matrix is the expected result, as there was no sample. The difference

from the identity matrix gives an error estimate for each of the components in the

pBRDF measurements presented in this section.

Then, the grit-blasted Ni sample, shot-blasted Ni sample, polished Ni sample,

and polished Al sample at θi = 40◦ and θs = 40◦ were measured; resulting Mueller
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matrices are

MNi,grit =



















1.0000 −0.0040 −0.0464 −0.0064

−0.0229 0.9786 −0.0042 −0.0165

−0.0215 −0.0046 0.9840 −0.0143

−0.0019 −0.0047 0.1012 0.9563



















, (126)

MNi,shot =



















1.0000 −0.0226 −0.0409 0.0314

−0.0250 0.9106 0.0234 −0.0422

−0.0092 0.0120 0.8892 0.0025

−0.0206 −0.0623 0.0783 0.7939



















, (127)

MNi,pol =



















1.0000 0.0415 −0.0490 −0.0101

−0.0011 0.9958 −0.0077 −0.0164

−0.0160 −0.0125 1.0017 0.0111

0.0052 −0.0210 0.0876 0.9763



















, (128)

MAl,pol =



















1.0000 0.0584 −0.0345 −0.0202

0.0140 0.9933 −0.0134 −0.0186

−0.0305 −0.0208 0.9940 0.0338

0.0143 −0.0329 0.0621 0.9773



















. (129)

These measurements show that the Mueller matrices are block diagonal for θi = 40◦

and θs = 40◦, which is where the BRDF reaches its highest measured value for all

of these samples since none of them are extremely diffuse; only one entry that is

not block diagonal is in excess of 5%, and only for one entry in the shot-blasted Ni

material, which could be due to measurement error. The theory behind the pBRDF

data for in-plane BRDF measurements in [33] only shows the BRDF is block diagonal,

so a block diagonal form will be assumed instead of a diagonal form.
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To determine whether this changes when moving off specular, the Mueller matrix

for the grit-blasted Ni sample was measured at θi = 40◦ and θs = 40◦±5◦; see Figure

28. As can be seen from that plot, the resulting Mueller matrix values do not change

significantly with scattering angle for this sample.

Figure 28. Mueller matrix results for grit-blasted Ni at λ = 4.4µm, θi = 40◦, and
θs = 40◦ ± 5◦.

As noted previously, pBRDF theory in [33] asserts a block diagonal form in the

general case, which appears to be backed by these pBRDF measurements. Thus, a

block diagonal form is assumed in this dissertation.

4.2 Measuring Unpolarized BRDF

From the results obtained by measuring the Mueller matrix using DRR, the cross

polarization terms were determined to be negligible; that is, the Mueller matrices
↔

Ms

for the samples were determined to be of the form
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↔

Ms =



















m00 m01 0 0

m10 m11 0 0

0 0 m22 m23

0 0 m32 m33



















. (130)

Since the DRR results above show the Mueller matrix is block diagonal for these

samples and in-plane BRDF measurements, it is possible to greatly reduce the mea-

surement space required to obtain an unpolarized BRDF, as well as simplifying the

setup process at each wavelength.

To take advantage of this knowledge and to greatly reduce the measurement time

required to compute the unpolarized BRDF, only a generating waveplate and gen-

erating polarizer are used. The generating polarizer is placed after the generating

waveplate. The generating polarizer is set to horizontal (p, or +) and vertical (s, or

−) polarization states only. The generating waveplate before the polarizer serves the

function of rotating the Stokes vector leaving the waveplate, ~swp, to be in the state

~swp =



















1

0

s2

s3



















, (131)

where s2 and s3 are of relative unimportance, as these terms will be extincted by

the polarizer prior to reaching the sample. The generating waveplate thus serves the

function of rotating the polarization state of the laser such that there is equal power

in the s and p polarization states, as is represented by the 0 entry in the second

element of the Stokes vector.

The p or s polarization is selected by varying the polarizer in the horizontal

or vertical position, respectively. If BRDF data is taken for both p (+) and s (-)
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polarizations incident on the sample, then the incident Stokes vector ~s± is

~s± =
1

2



















1

±1

0

0



















. (132)

That is, the incident Stokes vector is in either p or s polarization, with equal power

incident on the sample independent of polarization. The factor of 1/2 comes from the

1/2 in front of the Mueller matrix for a polarizer in Equation (17), but is the same

regardless of whether s or p polarization is incident.

Upon reflection of this Stokes vector off the sample Mueller matrix, the Stokes

vector ~s±,det at the detector is given by

~s±,det =
↔

Ms~s± =
1

2



















m00 ±m10

x

y

z



















, (133)

where x, y, and z values are unimportant because a detector only measures s0, as

was discussed in detail when Stokes vectors were introduced in Chapter III.

By measuring the BRDF once for p polarization (obtaining a BRDF fp)and re-

peating again for s polarization (obtaining a BRDF fs), at each angle the following

linear system is obtained:

1

2







1 1

1 −1













m00

m10






=







fp

fs






. (134)

This matrix is easily solved for the unpolarized BRDF fr given by the m00 com-

ponent by the simple relationship
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fr = fp + fs (135)

The error in this incident Stokes vector is on the order of the extinction ratio of

the polarizer, which varies with wavelength but is less than 1% at all wavelengths

and thus is not a dominant source of error, as will be seen in the analysis later in this

chapter.

To be able to properly account for temporal variations and ensure repeatability

of the measurement, each polarization state (s and p) was measured three times for

each incident and scattered angle; this result was averaged prior to summing the s

and p BRDFs to obtain the unpolarized BRDF.

4.3 Uncertainty Analysis

In this section, an uncertainty analysis for BRDFmeasured with the CASI R© system

using the revised measurement process described above is presented. Following the

error analysis for BRDF calculations as detailed by Cady in [11], as well as in Stover’s

popular text in [62], the error in this BRDF measurement method is calculated.

As Stover states, the primary sources of error for BRDF measurement are aperture

misalignment, aperture size uncertainty, detector nonlinearity, and (at grazing angles

in particular) scattering error. His Equation 7.30 (based on a simplification of Cady’s

analysis) is given as

(

∆BRDF

BRDF

)2

=
(m

θ

)2
(

cos−1

(

R cos θ
√

∆y2 +R2

)

− θ

)2

+ 2(NL)2+

(

2∆r

r

)2

+

(

∆θs sin θs
cos θs

)2
(136)

where the first term is aperture misalignment error; m is the slope of the BRDF on a

120



log plot, θ = θs−θi is the angular distance away from specular, R is the distance from

the sample to the aperture, and ∆y is the aperture misalignment in the out-of-plane

direction. The second term represents detector nonlinearity, NL. The third term

represents uncertainty in the aperture size; ∆r is the uncertainty in the radius of the

aperture, and r is the radius of the aperture. The last term represents uncertainty in

the scattered angle ∆θs.

Additionally, this method combines horizontal (H) and vertical (V) polarization

states to approximate the unpolarized BRDF. Since the dominant error terms are in-

dependent of incident polarization, this increases the uncertainty in our measurements

by
√
2; that is,

√

(∆BRDFH)2 + (∆BRDFV )2 ≈
√

2(∆BRDF )2, with ∆BRDF

given per Equation (136).

Recall that Teledyne-Judson InSb and HgCdTe detectors, liquid nitrogen-cooled to

77K, were used. Care must be taken to ensure the detector response remains linear.

To do so, the incident beam was attenuated until a linear response was obtained.

Total signal was measured with the largest aperture, attenuated using neutral density

filters, and repeated until the drop in total power was linear when adding another

neutral density filter.

For the CASI R© system error analysis, the following parameters were used:

• m = 2, as this is a typical value for the slope of the BRDF on a log plot for the

data collected. Stover states this is typically a value between 1 and 3 for most

BRDF measurements.

• R = 50 ± 0.5 cm, as the measured distance from the sample holder to the

aperture. (SMS nominally states R = 50 cm for CASI R©, which was measured

and verified.)

• ∆y = 30µm. The smallest step size for moving the aperture in the y direction
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is 2.5 µm, but when running the aperture centering routine, the CASI R©moves

the smallest aperture in the y direction by 30µm at a time and interpolates

to predict where the beam center is located. To be conservative in this error

estimate, the beam centering routine’s step size, not the minimum step size,

was used for this value.

• NL = 0.02, as an upper bound on the detector nonlinearity error. As stated

before, steps were taken to ensure the measurement was within the linear regime

of the detector.

• ∆r/r = 0.03 for the smallest aperture (300 µmdiameter). Although not mea-

sured, conversations with the CASI R©manufacturer indicated the diameter may

be off in the least significant (1 µm) digit. This aperture is used for measure-

ment of specular samples within ±0.38◦ of the specular direction. For distances

further than 0.38◦ from specular, ∆r/r = 0.02 is used since larger diameter

apertures (1.100 mm, 4.075 mm, and 13.85 mm) have a smaller relative uncer-

tainty in aperture size.

• ∆θs = 0.5◦, as was measured using a protractor with markings every 1◦. ∆θs

represents the uncertainty in the absolute position of the aperture arm. This

uncertainty arises from the cos θs term in the BRDF. Stover states this error

term is most important for grazing angles (e.g., θs ≥ 80◦). In this dissertation,

BRDF data are measured at a maximum angle of θs = 65◦, so the error due to

this term was far less significant. This absolute position uncertainty quantifies

the uncertainty in the sample rotation stage (since θs is measured relative to the

surface normal) and in the overall receiver arm offset. This term is not to be

confused with ∆r/r and ∆y, which quantify uncertainty in relative positioning

of the aperture arm compared to the specular direction. CASI R© is able to scan
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at very fine resolution in relative position, as quantified by the numbers above.

Stover’s analysis (and Cady’s more thorough analysis) diverges at θ = 0, but

close to specular, the errors at various points are summarized in Table 4.1. Recall

θ = θs − θi. In Table 4.1, θ = 0.011◦ represents one data point off specular with the

smallest step size used for any of the measurements in this dissertation. The next

five entries represent the error at other points close to specular reflection. The final

row is the error at θs = 65◦, the steepest angle measured in this dissertation.

Table 4.1. Relative error in reported unpolarized BRDF measurements using the AFIT
CASI R© system

θ = θs − θi θi = 20◦ θi = 30◦ θi = 40◦ θi = 50◦

0.011◦ 0.1668 0.1669 0.1671 0.1764
0.022◦ 0.1039 0.1041 0.1043 0.1049
0.05◦ 0.0981 0.0982 0.0985 0.0991
0.1◦ 0.0981 0.0982 0.0985 0.0991
0.5◦ 0.0750 0.0752 0.0756 0.0764
1◦ 0.0750 0.0752 0.0756 0.0764

θs = 65◦ 0.0794 0.0794 0.0794 0.0794

The final step in calculating the uncertainty in the data is to add in temporal

uncertainty. This temporal uncertainty is calculated from the standard deviation of

the three measurements made at each incident angle and incident polarization, and

varies from one measurement to the next. Typically, the relative uncertainty due to

this temporal variation is largest near the noise floor, which varies with wavelength

and laser power, but was generally around 10−4 sr−1. To obtain the final uncertainty,

the temporal uncertainty is added to the measurement uncertainty in quadrature.

To illustrate the uncertainty for a typical BRDF measurement, consider Figure

29. This figure is an enlarged version of Figure 68(c), to be discussed in more detail

in Chapter V. Here, that figure is enlarged to show more clearly that the data is

significantly different. In many of the figures of raw BRDF data that are presented

in Chapter V, error bars are not included because the plots become difficult to read.
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In this chapter, plots with error bars are included to provide a visual reference for

the uncertainty numbers computed in the above analysis.

Figure 29. Grit-blasted Ni sample data at all incident angles, plotted in ∆β = βs − βi

space, with error bars.

Likewise, in Figure 30, a similar plot is presented. This plot is an enlarged version

of Figure 69(b) that is discussed in Chapter V; here, it is presented in an enlarged

form to show the error bars. For these more specular samples, measurements were

taken at smaller angular spacing, resulting in increased error immediately around

specular; however, the error rapidly decreases when moving off specular.

To address repeatability of the overall process, a polished nickel sample with

NIST-certified surface roughness of 0.071 µm was measured at a wavelength of 3.39

µm on two separate occasions at four different incident angles; see Figure 31. In this

figure, the data is shown relative to its maximum measured value, which occurs at

θi = θs = 50◦; data is plotted within 4◦ of the specular lobe. Before each measurement,

a complete setup of the CASI R© system was performed. In each case, the complete

setup required laser alignment, detector alignment, waveplate alignment, polarizer
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Figure 30. Polished Ni sample data at all incident angles, plotted in ∆β = βs−βi space,
with error bars.

alignment, sample alignment, and so forth. The specular peak maintains quite similar

shape in both completely independent measurements, and the wings of the BRDF

data also match quite well. Minor differences are accounted for by the laser beam

striking a slightly different position on the sample (thus resulting in small shifts in

the location of the diffractive peaks visible in the BRDF that are a property of the

surface of the sample as an artifact of machining).

In summary, this chapter examined the experimental methods that are used for

BRDF data presented in the chapters that follow. The DRRmeasurement technique is

detailed, with some results of DRR measurements presented for a few samples. These

results suggested a much less time-consuming technique could be used for this study.

An uncertainty analysis was performed on this simpler measurement technique for

the AFIT CASI R© scatterometer. This uncertainty analysis showed that the relative

uncertainty 0.5◦ away from specular is under 8%, and that the relative uncertainty

0.011◦ away from specular (smallest step size measured) is under 18%. The next
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Figure 31. Comparison of Polished Ni BRDF measured data (relative to its maximum
value at θi = θs = 50◦) taken completely independently on two separate occasions, for
(a) θi = 20◦, (b) θi = 30◦, (c) θi = 40◦, and (d) θi = 50◦.

chapter combines the background and measurement to examine the BRDF of several

materials, both independently as compared to the microfacet model, and to study

how the BRDF becomes more specular with increasing wavelength.
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V. Measurement Results

In this chapter, measurement results are discussed. These results showed that

modifying the distribution function by inserting a wavelength dependence that is a

constant power of λ was not accurate. Thus, at the conclusion of the results discussed

in this chapter, it will be necessary to perform novel theoretical work in Chapter VI

to better understand how the microfacet models vary with wavelength. Portions of

this presentation are also found in [9].

A brief overview of the samples that are measured is presented first. Then, results

of fitting some of the BRDF data to the microfacet model are presented. The width

at the exp(−1) point in the raw data is analyzed at each measured wavelength. (This

is similar to using the half width at half maximum, but is instead calculated at

exp(−1) = 37% of the maximum value instead of at 50% of the maximum value.)

The width analysis showed that fitting to microfacet BRDF models does not appear

to be a matter of simply finding the proper distribution function, but instead there

appear to be flaws in the microfacet model itself that are particularly noticeable in

the intermediate region, where surface roughness is on the order of the wavelength

of light. Finally, as described in [8], the role of the cross section conversion term in

aligning BRDF height is examined.

5.1 Samples

A set consisting of 12 samples was obtained to make BRDF data measurements,

although due to time and sample availability, not all of the samples were measured

at each wavelength. BRDF data were collected for a total of 67 different combina-

tions of sample and wavelength, as summarized in Table 5.1. In total, 276 different

BRDF measurements were made for each incident angle, sample, and wavelength.
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Each measurement consisted of six scans, three for p polarization that were averaged

together and three for s polarization that were averaged together, using the proce-

dure discussed in Chapter IV for making unpolarized BRDF measurements. A total

of 1,656 CASI R© scans were required to take the BRDF data. In addition, there

were significant steps taken for alignment and setup in accordance with SMS CASI R©

operating procedures that were performed for each wavelength and for each material.

Table 5.1. Summary of BRDF data collected using CASI R©

Material λ (µm) 3.39 4.4 5.2 5.63 6.4 8.0 10.6
Aluminum, polished X - - - - X X

Aluminum, rough X - X+ X+ X X X

Infragold R© X - X+ X X X X

Nickel, grit-blasted X X X+ X+ X X X

Nickel, polished X X X+ X X X X

Nickel, shot-blasted X X X X X X X

Paint, Gray (DE = 0) X X - - - X X

Paint, Gray (DE = 2.2) X X X+ X+ X X X

Paint, Gray (DE = 4.1) X X - - - X X

Paint, Silver (Rough) X - - - - X X

Vehicle Paint, Black X- X X X+ X X X

Vehicle Windshield Glass X - X X X X X

- No BRDF data collected for this sample at this wavelength

X- BRDF data collected for θi = {20◦, 40◦, 50◦}
X BRDF data collected for θi = {20◦, 30◦, 40◦, 50◦}
X+ BRDF data collected for θi = {10◦, 20◦, 30◦, 40◦, 50◦}

The grit-blasted Ni sample had a NIST-traceable certification of an average surface

height of 4.29 µm. The shot-blasted Ni sample had a NIST-traceable certification of

an average surface height of 2.5 µm. The polished Ni sample had a NIST-traceable cer-

tification of an average surface height of 0.071 µm, and was the most highly polished

sample measured in this dataset. Although the surface heights are NIST-traceable

for these samples, the correlation length was not known. The measured glass sample

was anti-shatter glass, consisting of two tempered glass plates with a material in the
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middle to prevent shatter; thus, this form of glass was expected to reflect off the front,

back, and middle of the material; this issue made alignment of the glass sample some-

what difficult. The Infragold R© sample appeared to be the roughest surface-reflecting

sample, with the rough Al sample also expected to be very diffuse. The rough silver

paint sample appeared to be the roughest sample overall (but was expected to have

both surface-reflecting and volume-reflecting elements); this material had roughness

features larger than the laser beam size, which also complicated alignment. The three

gray paint samples vary in amount of weathering, represented by the DE value, but

otherwise are identical samples.

In general, data was collected at θi = {20◦, 30◦, 40◦, 50◦}. For black vehicle paint

at 3.39µm, data is not present at 30◦ because later analysis found an error writing

out the data files at this wavelength. This issue was not present for other data files.

For some of the samples and wavelengths, as shown in Table 5.1, data at 10◦ was

additionally collected. In chronological order, the wavelength data was collected at

4.4, 3.39, 10.6, 8.0, 6.4, 5.63, and 5.2 µm. Not all of the samples were available at

the beginning of the data collection at 4.4 µm, so some materials did not have data

collected at this wavelength. Furthermore, after the 8.0 µm data was taken, a reduced

sample set was selected to enable collection of more wavelengths. This involved

measuring only one polished metal sample, one gray paint sample, and excluding

the diffuse rough silver paint sample from the measurement, as it is more time-

consuming to align and the BRDF did not show significant wavelength variation for

this sample. The collection of this wavelength-dependent BRDF data in the MWIR

and LWIR, along with analysis described in this chapter, is one of this dissertation’s

major contributions toward advancing BRDF research.
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5.2 Fitting Data to Microfacet BRDF

In this section, some of the measured BRDF data is presented in standard spherical

coordinates to illustrate representative data that were taken. After commenting on

some observations with this subset of data, all of the wavelength-dependent features

of all of the samples are presented, since wavelength dependence of the BRDF is

the focus of the research for this dissertation. For all data presented, the data is

normalized by the DHR to remove effects due to overall reflectance of the material;

that is, the plots are fr/ρ, where the DHR ρ is defined by Equation (28). The DHR

was calculated from the measured BRDF data.

Figures 32 and 33 show the results for the grit-blasted Ni sample at 3.39 and

10.6 µm, respectively. Recall that this sample was obtained from a set that included

a NIST-traceable average surface height roughness of 4.29 µm, or on the order of

the wavelengths used to interrogate the sample. At wavelengths of both 3.39 and

10.6 µm, the material has a definite specular peak, despite appearing rough in the

visible spectrum, due to IR wavelengths being longer. Furthermore, comparing the

two figures directly shows that the BRDF peaks are consistently about an order of

magnitude higher at 10.6 µm than at 3.39 µm. Thus, BRDF of the grit-blasted

Ni sample is varying substantially with wavelength. This wavelength variation il-

lustrates the problem explored in this work using experimental data measured with

the sophisticated CASI R© system, in that the BRDF is varying substantially with

wavelength in a manner that is not inherently captured by the microfacet geometric

optics approximation.

As mentioned in Chapter III, a technique for adding the wavelength dependence

to the microfacet model is to assume the variation is linear, and interpolate between

two points. This was performed for the grit-blasted Ni sample to validate the results

obtained in Chapter III with this work’s BRDF measurements. Using Equation (93),
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Figure 32. BRDF divided by DHR for grit-blasted Ni measured at 3.39 µm.

Figure 33. BRDF divided by DHR for grit-blasted Ni measured at 10.6 µm.
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the measured BRDF data for grit-blasted Ni at 3.39 µm and at 10.6 µm were used

to predict the BRDF data at 8.0 µm; see Figure 34 for the BRDF data, and Figure 35

for the relative error. As was observed in Chapter III with the NEF data, the relative

error changes most singificantly near the specular peak, validating the observation

that linear interpolation does not accurately capture the wavelength dependence of

the specular peak. This trend was observed at other incident angles, and for other

materials that exhibited significant variation with wavelength; see Figures 36 and 37

for an example using the shot-blasted Ni sample at θi = 20◦. The specular peak is

also where much of the energy is being directed in the hemisphere, so errors around

the specular peak are particularly problematic.

The initial approach to solving this problem was to take data, fit existing mi-

crofacet models (as detailed in Chapter III) to this data, using a variety of different

microfacet distribution functions, and modify the model based on experimental data

to include a wavelength scaling. To illustrate this effect, consider for example the

Cook-Torrance BRDF model discussed in Chapter III. This model uses the Beck-

mann (Gaussian) distribution function for the microfacet statistics. This data was

fitted to the grit-blasted Ni sample plots using all incident angle data, MATLAB R©

2014b lsqcurvefit built-in function for nonlinear curve fitting, and using two differ-

ent error metrics g(x); that is, the built-in lsqcurvefit function is used to calculate

min
~p

||g[fr(ω̂i, ω̂s, ~p)]− g[fm(ω̂i, ω̂s)]||2, (137)

where fr is the modeled data with input parameters ~p for the particular BRDF

model, fm is the measured BRDF data, and g(x) is the metric function. Two different

metric functions were chosen: g(x) = x (default metric function), which is a standard

nonlinear curve fit, and g(x) = ln(x), which is a logarithmic fit due to the BRDF

varying by several orders of magnitude.
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Figure 34. Linear interpolation to calculate grit-blasted Ni BRDF divided by DHR at
θi = 40◦ and λ = 8.0µm, using measured BRDF data at λ = 3.39µm and λ = 10.6µm,
compared to the actual BRDF measured at λ = 8.0µm.

Figure 35. Relative error in the linear interpolation to calculate grit-blasted Ni BRDF
divided by DHR at θi = 40◦ and λ = 8.0µm, using measured BRDF data at λ = 3.39µm
and λ = 10.6µm.
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Figure 36. Linear interpolation to calculate shot-blasted Ni BRDF divided by DHR
at θi = 20◦ and λ = 8.0µm, using measured BRDF data at λ = 3.39µm and λ = 10.6µm,
compared to the actual BRDF measured at λ = 8.0µm.

Figure 37. Relative error in the linear interpolation to calculate shot-blasted Ni BRDF
divided by DHR at θi = 20◦ and λ = 8.0µm, using measured BRDF data at λ = 3.39µm
and λ = 10.6µm.
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For the grit-blasted nickel BRDF sample at λ = 3.39µm, results for fitting to the

Cook-Torrance BRDF are plotted in Figure 38 for the default metric, and in Figure

39 using the ln metric. For the default fitting metric, one can see the peak is fit

somewhat by the Cook-Torrance model, although the overall shape of the Gaussian

distribution does not match the overall shape of the data. Using the ln metric fits

the data off specular reasonably well, but results in a bad fit near the specular peak.

Note that in both plots, there is an occultation zone in the measured data, where

data points were not collected; this is due to the receiver arm blocking the incident

laser beam, and is centered at −θi.

One observation that can be made from this result is that perhaps an improper

BRDF model was chosen. From Figure 38 in particular, it is clear that the Gaussian

shape of the Beckmann microfacet distribution does not match the shape of the

measured BRDF data. Perhaps if a better microfacet distribution function were

used, the quality of the fit could be improved. This topic is explored next.

Adaptive Microfacet BRDF Model.

As outlined in [5], which is based largely on the microfacet BRDF overview de-

scribed in Chapter III, several different microfacet BRDF models are of the same basic

form. These models differ primarily in which basic physical components (Fresnel re-

flection, cross section conversion, choice of distribution function, etc.) of a geometric

BRDF are included. In [5], and using data from the MERL database[42], BRDF

fitting can be significantly improved upon by using the Hyper-Cauchy distribution

function in the Cook-Torrance BRDF model instead of the default Beckmann distri-

bution function. These results are described briefly here, prior to returning to the

problem of fitting this measured BRDF data.

As long as a normalized distribution function is chosen, one could make sim-
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Figure 38. BRDF for grit-blasted Ni measured at 3.39 µm, fitted to Cook-Torrance
BRDF, using the default error metric, g(x) = x.

Figure 39. BRDF for grit-blasted Ni measured at 3.39 µm, fitted to Cook-Torrance
BRDF, using ln error metric, g(x) = ln(x).
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Figure 40. Comparison of various isotropic microfacet distribution functions. Dbm,u

and De,u are unnormalized. Dc is an approximation to Db (and thus also to Dg).

ple changes to existing models based on the summary presented in Chapter III and

discussed in [5]. For example, one could create a new BRDF using the normalized

two-parameter Hyper-Cauchy microfacet distribution in place of the normalized Beck-

mann distribution, but otherwise using the Cook-Torrance model elements from Table

3.1:

fr(ω̂i, ω̂s) = ρsDh(θh)Gc(ω̂i, ω̂s)σ(θi, θs)F (θd) +
ρd
π

(138)

This additional flexibility enables a material-driven choice of distribution function

without sacrificing the desirable benefits in models such as Cook-Torrance, and with-

out generating an entirely new model.

Consider the isotropic distribution functions defined in Chapter III; these functions

are plotted in Figure 40. By comparing these shapes to a measured BRDF, one can

determine whether its specular lobe is shaped more like that of the Beckmann/Cosine

distribution, the Hyper-Cauchy distribution, or the elliptical (Sandford-Robertson)

distribution. Other desirable model characteristics, such as Fresnel, geometric at-

tenuation, and cross section conversion, can then be added to the experimentally-
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Figure 41. Fit of Cook-Torrance BRDF to MERL nickel.binary file at 20◦, 40◦, and
60◦. The Gaussian facet distribution appears to be the improper shape for this BRDF
data, suggesting a better result may be obtained through use of a different microfacet
distribution function. The lines represent the best fit and the dots represent the BRDF
data from Matusik’s MERL database[42].

determined distribution function choice to provide a data-driven BRDF model.

Figure 42. Fit of modified Cook-Torrance BRDF to MERL Nickel file at 20◦, 40◦, and
60◦. This modified form is identical to Cook-Torrance, except with the Hyper-Cauchy
distribution function in place of the Beckmann (Gaussian) distribution function. This
modified form is a significantly better fit to the data. The lines represent the best fit
and the dots represent the BRDF data from Matusik’s MERL database[42].

As an example of the power of expressing the BRDFs in this common language and

switching the distribution function used in a model, consider the BRDF for nickel as

contained in Matusik’s MERL database nickel.binary file, freely available online[42].

Ngan performed a study fitting the MERL data to some popular BRDF models; in

his analysis, Cook-Torrance and He-Torrance (not a microfacet model) were tied for
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the best fit to the MERL nickel data, although the fit was not great–it had an error

of 11.4% with both models [47]. Nonetheless, this result suggests a reasonable first

attempt at fitting this BRDF data to a microfacet model would use the Cook-Torrance

BRDF.

Considering only the red channel nickel data, the BRDF is plotted at three incident

angles, with Cook-Torrance parameters fitted to the natural logarithm of the BRDF;

see Figure 41. (In this analysis, n = 2.1 and κ = 3.8 were used for the index of

refraction of nickel at 650 nm according to Rakic et al.[54], and were not varied as

fitting parameters.) From this figure, it is clear that Cook-Torrance’s Beckmann

distribution function is not appropriate for this BRDF data; the Gaussian is concave

down over a substantial region where the measured BRDF data is concave up. No

amount of varying fit parameters or changing the fitting function’s metric will fix this

issue; therefore, it may be assumed that the model’s Beckmann distribution function

is not suitable for fitting this data.

Having identified this problem, a new distribution function could be considered

to replace the Beckmann distribution in the Cook-Torrance BRDF. By studying the

BRDF data in Figure 41 as compared to Figure 40, the Hyper-Cauchy distribution

seems to be a better choice, as it is concave down over a much smaller region and

concave up over a majority of the microfacet distribution. By simply replacing the

Cook-Torrance BRDF’s Beckmann (Guassian) distribution with the Hyper-Cauchy

distribution function from Wellems, a far better result is obtained; see Figure 42.

BRDF Fit with Hyper-Cauchy Distribution.

This same procedure could be used to attempt to find a better fit for the Cook-

Torrance BRDF to the IR BRDF data measured in this dissertation, using the Hyper-

Cauchy distribution function in place of the Beckmann distribution function. This
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was attempted with the default metric in Figure 43, and using the ln metric in Figure

44. In this case, unlike with the MERL data, the change in distribution function did

not appear to solve the fit problem, although it still resulted in a somewhat better

fit. However, there are still model deficiencies, either in the wings (for the default

error metric) or near the peak (for the ln error metric).

Fitting to Other Samples.

Comparing Figure 45 (shot-blasted Ni at 3.39 µm) to Figure 44 (grit-blasted Ni at

3.39 µm), the BRDF is not as strongly peaked at 3.39 µm. Since the shot-blasted Ni

sample is somewhat more diffuse, the Cook-Torrance BRDF with the Hyper-Cauchy

distribution function appears to fit this data quite well. However, when moving to

higher wavelengths, the BRDF becomes more sharply peaked and the fitting routine

for the same BRDF model results in far less accurate fits, as can seen by examining

the shot-blasted Ni sample at 3.39, 4.4, 5.63, and 10.6 µm; see Figures 45-48.

Considering a different material that is more diffuse, the rough aluminum sample

at 3.39 µm is now examined. The BRDF data, fitted to the Cook-Torrance BRDF

model (with the Beckmann distribution and the ln error metric) is plotted in Figure

49. The BRDF fit is much closer for this sample. The BRDF for the rough Al sample

does not vary much with wavelength, and thus the microfacet model fits relatively

well at all wavelengths measured.

Moving on to the polished Al sample, the Cook-Torrance BRDF with the Hyper-

Cauchy distribution function appears to give the best fit. Indeed, at 3.39 µm, the fit is

reasonable; see Figure 50. However, when moving to 10.6 µm, for the same material,

the BRDF fit with the same distribution function and fit metric is no longer good;

see Figure 51. This does not make sense if the distribution function represents a

distribution of microfacets. The BRDF data for polished Al at 4.4 and 8.0 µm is
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Figure 43. BRDF for grit-blasted Ni at 3.39 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using the default
error metric, g(x) = x.

Figure 44. BRDF for grit-blasted Ni at 3.39 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using ln error metric,
g(x) = ln(x).
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Figure 45. BRDF for shot-blasted Ni at 3.39 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using the ln error
metric, g(x) = ln(x).

Figure 46. BRDF for shot-blasted Ni at 4.4 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using ln error metric,
g(x) = ln(x).
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Figure 47. BRDF for shot-blasted Ni at 5.63 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using the default
error metric, g(x) = x.

Figure 48. BRDF for shot-blasted Ni at 10.6 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution in place of the Beckmann distribution, using ln error metric,
g(x) = ln(x).
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in between these two extremes, showing the fit is becoming worse with increasing

wavelength. This observation suggests that more than just a wavelength dependence

is affecting the microfacet distribution function. This trend was also noticed for the

polished Ni sample, although for the polished Ni sample the BRDF model was not a

good fit in the wings even at 3.39 µm.

These materials are all surface-reflecting materials, and discrepancies exist for mul-

tiple materials and multiple roughnesses. These trends were also noticed when fitting

other materials not shown in this section. In general, the more diffuse a material

was, the better it would fit to the standard Cook-Torrance model. In between rough

and specular, the Cook-Torrance model replaced with a Hyper-Cauchy distribution

function would improve on the fit quality, although even then it would not always

result in a great fit. As the BRDF became even more specular, the overall fit would

become worse. This observation will be explained theoretically when a comparison of

microfacet models to scalar wave optics models is made in Chapter VI.

Figure 49. BRDF for rough Al at 3.39 µm, fitted to Cook-Torrance BRDF, using ln
error metric, g(x) = ln(x).
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Figure 50. BRDF for polished Al at 3.39 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution, using ln error metric, g(x) = ln(x).

Figure 51. BRDF for polished Al at 10.6 µm, fitted to Cook-Torrance BRDF with
Hyper-Cauchy distribution, using ln error metric, g(x) = ln(x).
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Although only the Beckmann and Hyper-Cauchy distribution functions are shown

here, the Beard-Maxwell model uses a modified Cauchy distribution (and thus is

a simplification of the Hyper-Cauchy distribution), and the elliptical distribution

function can be approximated by appropriate choice of the second parameter q in

the Hyper-Cauchy distribution. The bi-static scan used in the NEF was not tested,

since bi-static scan data was not taken for these samples and greatly increases the

number of parameters required to specify the BRDF. These fundamental flaws in the

microfacet BRDF models led to a shift in the approach to this dissertation, as the

underlying model appears to be flawed. Thus, the focus of the research into BRDF

models changed from adding a wavelength scaling to the microfacet BRDF models to

proposing a scalar wave optics-based modification to the microfacet BRDF models;

progress in this area is discussed in Chapter VI. However, the deficiencies noted here

for the fitting process do not preclude an analysis of the wavelength-dependent nature

of the raw BRDF data that was taken. That raw data analysis is perfomed in the

next section, for all materials measured.

5.3 Wavelength Variation of Raw Data BRDF Width

As discussed in Chapter III, and validated in Figures 35 and 37 using the data

measured for this dissertation, the specular lobe was expected to exhibit the strongest

non-linear wavelength dependence. At longer wavelengths, the magnitude of the

measured BRDF is higher; physically, the surface roughness appears smoother relative

to a wavelength. (DHR may also vary with wavelength, but the BRDF data presented

in this dissertation is divided by the DHR to account for this material property, as it

is not an inherent property of the BRDF in general but depends upon the particular

material comprising a sample.)

At this point, there are two possible resolutions to this problem that are examined
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in this dissertation. First, consider the microfacet model. This model assumes the

main influence on the BRDF (at least for more specular data) is driven by the micro-

facet distribution function. There is a concern that perhaps there exists a microfacet

distribution function that is not analyzed in the previous sections. This concern is

addressed first, but it is observed that there does not even appear to be an unknown

microfacet distribution function that would fit the data well.

Second, there is the possibility that the microfacet BRDF model’s form is funda-

mentally flawed, particularly at longer wavelengths (where a surface is not as rough

relative to a wavelength, and is expected to be more specular). The natural follow-on

questions are:

• What appears to be wrong with the microfacet model?

• What does the wavelength-dependent data suggest as a potential fix for the

microfacet model?

• When is the microfacet model valid?

The first two questions are addressed qualitatively in this chapter, after attempt-

ing to determine whether the microfacet model can be utilized with an unknown

distribution function. The last question is addressed in a theoretical analysis of

the microfacet model performed in Chapter VI, along with quantifying relationships

between the microfacet model and a scalar wave optics model to more rigorously

understand the difference in two limiting cases.

Unknown Microfacet Distribution Function.

To quantify whether the BRDF width spectral dependence makes sense in the

context of a microfacet model, it is instructive to examine the point at which the

BRDF has decreased to e−1 of its maximum value. There is a complicating issue
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with simply performing this analysis on the raw data. The width parameter in the

microfacet distribution function is the width at normal incidence. Normal incidence is

difficult to measure directly with the CASI R©, as the detector arm blocks the incident

beam. Thus, prior to analyzing the width of the measured data, a brief detour to

scattering theory is taken to describe how the width of the BRDF at normal incidence

is estimated from the BRDF data measured. After this brief explanation from theory,

results are presented from measured BRDF data at different wavelengths.

As mentioned in Chapter III, scalar wave optics models that include diffraction

use direction cosine space to represent BRDF data. The horizontal axis of the BRDF

plot in this space is given by Equations (98) and (99). (For in-plane data, recall

φs = {0◦, 180◦}.) Alternatively, it is possible to transform to a new space where θ

ranges from −90◦ to 90◦, and represent in-plane BRDF data in the retroreflective

quadrant as θ < 0, and forward scatter as θ > 0. In this space, the in-plane data in

direction cosine space is given by ∆β, defined as [26, 27, 29, 30, 38, 28]

∆β = βs − βi = sin θs − sin θi. (139)

This technique of plotting the BRDF data in ∆β space has been used by Harvey to

relate measured BRDF data at different incident angles, and show the BRDF data

at different incident angles theoretically become identical under this transformation

(excluding a difference in overall magnitude) [26, 28]. Therefore, this transformation

is used here to estimate the width of the BRDF at normal incidence for the different

measured θi values. The difference in height in the BRDF at different incident angles

are not important in understanding distribution width since it results in a different

overall scaling, which does not change the location where the BRDF has decreased

by e−1 from its maximum value.

To illustrate how this BRDF width analysis process is implemented, consider the
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BRDF data for the grit-blasted Ni sample at 3.39 µm, as shown in standard angular

coordinates at the beginning of this chapter in Figure 32. By performing the change

in coordinate system defined by Equation (139) for each incident angle and finding

the point at which the BRDF has decreased to e−1 of its maximum value, the BRDF

data for each incident angle is aligned, other than having a variable height. Figure

52(a) depicts the BRDF data from Figure 32 translated to direction cosine space

while Figure 52(b) shows this data on a linear plot, which emphasizes the specular

peak, and shows the BRDF width as calculated from the four different incident angles

at e−1 of the maximum height. As discussed previously, an overall height scaling does

not affect the e−1 location of the BRDF width. This process is performed on both

sides of the specular peak, where possible, to increase the number of data points in

the average. (For some of the BRDF data for rougher surfaces, the value on one side

of the peak does not decrease by e−1; in this case, that direction is not included.)

The standard deviation is also calculated from this averaging process.

This process is conducted at each wavelength for which there is measured wave-

length data, resulting in the data plotted in Figure 53. For all BRDF width figures

presented in this section, including Figure 53, (a) shows the BRDF width and stan-

dard deviation is plotted in linear space, along with reference powers of λ; (b) shows

the BRDF width (without error bars) with reference powers of λ in log-log space,

since the λ dependence would be linear on a log-log plot if it were a constant power

of λ. For the grit-blasted Ni sample, the BRDF is not varying linearly in power of λ.

For this sample, the NIST-certified surface height was 4.29 µm, which may explain

why the variation with λ is most significant near that wavelength in the BRDF data.

This result validates the observation in the prior section that the BRDF distribution

width does not vary in a straightforward manner with respect to λ; for this sample

at MWIR and LWIR wavelengths, the problem is not limited to finding a different
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Figure 52. (a) BRDF divided by DHR for grit-blasted Ni measured at 3.39 µm, in
direction cosine space, over the entire interval, and (b) zoomed in near the peak. The
dotted lines in (b) represent the width of the BRDF data for each incident angle. The
dark solid line on the right side of the horizontal axis represents the mean value of the
width.

microfacet distribution function or a better fitting metric.

To determine whether the above trend was peculiar to the grit-blasted Ni sample or

was a general property present over multiple samples, each measured sample was plot-

ted using this method. Figures 53-58 show the result for the surface-reflecting samples

that were measured, and Figures 59-64 show the result for the samples that were ex-

pected to have both surface-reflecting and volumetric components to the BRDF.

Considering the surface-reflecting Ni samples in Figures 53-55 first, it is apparent

that there is significant change in the rougher surfaces when the wavelength is on the

order of the surface height roughness. However, the polished Ni sample behaves quite

strangely, as it appears to be increasing slowly in width as a function of wavelength.

Looking at the remaining surface-reflecting samples in Figures 56-58, these BRDFs

all appear to not vary in width as a function of wavelength. (For the polished Al

sample, there might possibly be a slight increase in width at 10.6 µm compared to
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Figure 53. BRDF width versus λ for grit-blasted Ni in (a) linear space (with standard
deviation), and (b) log-log space. The dotted lines provide guidelines for integer powers
of λ.

Figure 54. BRDF width versus λ for shot-blasted Ni in (a) linear space (with standard
deviation), and (b) log-log space.

Figure 55. BRDF width versus λ for polished Ni in (a) linear space (with standard
deviation), and (b) log-log space.
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Figure 56. BRDF width versus λ for polished Al in (a) linear space (with standard
deviation), and (b) log-log space.

Figure 57. BRDF width versus λ for rough Al in (a) linear space (with standard
deviation), and (b) log-log space.

Figure 58. BRDF width versus λ for Infragold R© in (a) linear space (with standard
deviation), and (b) log-log space.
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Figure 59. BRDF width versus λ for gray paint (DE = 0) in (a) linear space (with
standard deviation), and (b) log-log space.

Figure 60. BRDF width versus λ for gray paint (DE = 2.2) in (a) linear space (with
standard deviation), and (b) log-log space.

Figure 61. BRDF width versus λ for gray paint (DE = 4.1) in (a) linear space (with
standard deviation), and (b) log-log space.
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Figure 62. BRDF width versus λ for specular black paint in (a) linear space (with
standard deviation), and (b) log-log space.

Figure 63. BRDF width versus λ for glass in (a) linear space (with standard deviation),
and (b) log-log space.

Figure 64. BRDF width versus λ for rough silver paint sample in (a) linear space (with
standard deviation), and (b) log-log space.
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at 3.39 µm, but it is within the standard deviation of the measurement, and thus

not conclusive.) The very rough samples are also of relatively constant width, but

instead of being a polished surface, these are very rough surfaces.

The same general results are present for the volume-reflecting samples. The three

gray paint samples in Figures 59-61 are all varying approximately the same with

wavelength. The BRDF width scaling is consistent at the wavelengths that were

measured for all three samples. Consider, for example, the λ = 4.4µm data points on

these three plots, which are all close to the λ−2 line. Similarly, the λ = 8.0µm data is

close to the λ−4 line on all three plots, and the λ = 10.6µm data is somewhat below

the λ−4 line on all three plots. These results show consistency in the measurement

and analysis, since the only difference between these samples is the DE value, which

is a measure of weathering. Now consider the additional data points in Figure 60. It

appears that this material is transitioning from a λ−2 dependence to a λ−4 dependence.

The black paint sample varies slowly with wavelength, and is specular at all wave-

lengths. The glass sample was also specular in BRDF at all wavelengths, although

it was more difficult to align due to the multiple surface reflections. This difficulty

in alignment, along with the significantly weak reflected signal of glass in the MWIR

and LWIR, is likely the source of the large standard deviations in Figure 63 at 6.4

and 10.6 µm.

Much of this width analysis backs the intuition that the BRDF of a material

becomes more specular as the wavelength increases, which is represented by a width

that is inversely proportionate to wavelength. However, the analysis shows there is

not a simple modification to the microfacet model to incorporate this wavelength

dependence, which suggests there are fundamental flaws in the microfacet model

in representing the BRDF width data. The next section illustrates from measured

data what is observed in these microfacet models. Finally, the chapter ends with a
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discussion of the BRDF height by analyzing the role of the cross section conversion

term of the BRDF. Chapter VI then fleshes out a comparison between the microfacet

model and a scalar wave optics model, forming a basis for future development of a

closed-form spectral BRDF model.

Raw Wavelength-Dependent Data.

This section examines the raw unpolarized BRDF data at all wavelengths for a

certain incident and scattered angle combination to determine what is happening with

the raw BRDF data, particularly for samples exhibiting strong wavelength-dependent

behavior.

Consider the grit-blasted Ni sample (average surface roughness 4.29 µm) at θi =

40◦, shown in Figure 65. In (a), the entire range of BRDF data is shown. Over

this range, it appears the BRDF data is actually comprised of an overall broad base

BRDF function, with a specular peak that begins to emerge from the data. In (b),

the specular peak is zoomed in on, in linear space. This specular peak grows with

wavelength (in general), with the exception of at λ = 8.00µm where the peak value

appears to not be as large due to significant diffractive effects that can be seen near

the peak. It appears that as wavelength increases, a peak emerges out of the overall

broad shape of the BRDF data. This observation is consistent with Figures 32 and

33 presented at the beginning of the chapter. It is also observed in Figures 46 and 47

for the shot-blasted Ni sample, where there appeared to be a specular peak emerging

from a broader underlying form in the BRDF data.

Physically, this effect can be understood by modeling the surface as a phase screen,

where each element of the screen shifts the phase of the incident electromagnetic wave

by a variable amount. When a surface is very rough (relative to the wavelength of

light), the surface is adding a random phase offset, resulting in the relatively broad
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Figure 65. Raw BRDF data for grit-blasted Ni at θi = 40◦ and all wavelengths, in (a)
semilog space, and (b) linear space, zoomed at the peak.

structure in the BRDF data. However, as the wavelength approaches the surface

roughness, the phase offset becomes less randomly distributed and diffractive effects

become evident in two ways: oscillations in the BRDF data are observed due to

diffraction, and a specular peak emerges due to the less randomly distributed phase

offsets.

This observation suggests that the metric of BRDF width variation, shown in

the previous section, may not be accurate in quantifying the BRDF width variation,

simply because it emphasizes the specular peak rather than this bimodal shape that

is primarily evident when viewed in log space. At some wavelengths (such as 3.39

µm in Figure 65), the BRDF width metric is measuring the width of the broad

diffuse lobe. However, at higher wavelengths (such as 10.6 µm in Figure 65), the

BRDF width metric is measuring the width of the narrow specular peak that has

emerged from the data. Nickel is a surface-reflecting metallic sample that is resistant

to oxidation, so the resulting effect is not expected to be due to volumetric scatter.

Since the microfacet model does not distinguish between the overall broad shape of
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the BRDF and the emergence of the specular peak, the failure of the width analysis

to accurately predict the BRDF suggests a flaw in the microfacet model itself.

Considering the polished Ni sample in Figure 66, which is at θi = 40◦, there is

little variation in the BRDF data as a function of wavelength, as the specular peak

in this sample has already emerged substantially. Diffractive features appear at all

wavelengths, but the magnitude of the specular peak does not change significantly (in

relative value) from one wavelength to the next, nor does the shape of the specular

peak change significantly. It should be noted that the upper limit of the dynamic

range of the CASI R© system was reached when measuring this sample, so the specu-

lar peak of this sample may actually be higher than the reported value. A calibration

scan performed during setup at each wavelength without a sample present resulted

in a measured unpolarized BRDF value of around 106 sr−1 (although this value var-

ied somewhat with wavelength). Away from the immediate peak, where instrument

measurement limitation is not present, the BRDF data does appear to be declining

from its peak value more slowly as wavelength increases. This is qualitatively con-

sistent with the BRDF width analysis result, which showed a slow increase in width

with wavelength overall. Furthermore, in Chapter VI, it is shown that this increase

in overall width with wavelength is expected from a comparison of the microfacet

BRDF model to a scalar wave optics model for a polished surface.

Note in Figure 66(b) that there is significant diffraction when the data is viewed

on a logarithmic scale, although it is less pronounced with the 5.20 and 5.63 µm

lasers. These diffractive peaks are expected to occur due to the machining process

used to create the sample. The lack of well-defined peaks at 5.20 and 5.63 µm

(which were both measured using the same QCL) suggest the BRDF data may be

somewhat degraded at those wavelengths due to the quality of that particular QCL.

This observation is additionally supported by Figure 55 where the width at 5.20 and

158



Figure 66. Raw BRDF data for polished Ni at θi = 40◦ and all wavelengths, for (a) all
angles, and (b) zoomed at the peak.

5.63 µm appear to be outliers.

Finally, for a rough sample, such as the AFIT Infragold R© sample, the BRDF

does not exhibit a significant wavelength variation; see Figure 67. Here, there is no

significant specular peak, and the data is quite consistent from one wavelength to the

next. Thus, the rough sample BRDF data appeared to not suffer from a deficiency

in the BRDF width data analysis performed previously.

This raw data examination suggested that the BRDF width analysis performed

previously to determine if there was an unknown microfacet distribution function

may not be appropriate for materials where surface roughness is on the order of a

wavelength, due to the bimodal nature of the BRDF data for these materials when

viewed in log space. However, it does illustrate a fundamental flaw with the microfacet

BRDF model, in which the microfacet distribution function is incapable of describing

a BRDF peak which appears to be comprised of a sum a diffuse BRDF (due to random

phasing that masks diffractive effects) and a specular peak, such as in Figure 65.

From the results in this chapter, it is observed that there are deficiencies with
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Figure 67. Raw BRDF data for Infragold R© at θi = 40◦ and all wavelengths.

the microfacet BRDF model. In Chapter VI, a connection between the microfacet

model and scalar wave optics models is made to outline an approach to hone in on

this problem, and to answer the question of when the microfacet model does work.

However, prior to concluding this analysis of raw BRDF data, the role of one of the

key elements of a microfacet model, the cross section conversion term, is examined

using this experimental data; that subject is addressed in the next section.

5.4 BRDF Magnitude at Specular Peak

The magnitude of the BRDF at the specular peak changes with incident angle as

well, as can be seen the BRDF data plots in this chapter. Moving to direction cosine

space does not alter any of the BRDF magnitude data. In the microfacet model, it

appears the cross section conversion term, σ, provides a scaling that captures this

inherent height variation. Recall from Equation (37) that this scaling is given as

σ = (4 cos θi cos θs)
−1. This section investigates whether the angular variation in σ

provides that approximate scaling; much of this section is taken from [8].

BRDF data for a grit-blasted nickel sample at λ = 3.39µm illustrating the overall
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Figure 68. Grit-blasted nickel BRDF at 3.39 µm in (a) real space, (b) ∆β space, (c)
zoomed at peak (with error bars), (d) scaled by 1/σ, (e) scaled and zoomed at peak.
All plots are relative to the peak at θi = 50◦ and divided by DHR.[8]

process is shown in Figure 68. Unlike prior plots in this chapter, the BRDF data in

this section has been scaled by the peak of the BRDF data at 50◦; i.e., the peak of

the BRDF data at 50◦ is set to 1, and all other data points are relative to that point.

In Figure 68(a), the in-plane BRDF data for four different incident angles is shown

in angular coordinates. Figure 68(b) is the same data transformed to direction cosine

space, and (c) zooms in on the peak of the data to more clearly illustrate the scaling

issue. In Figure 68(d) and (e), the direction cosine plot is scaled by 1/σ, where (e)

is again zoomed in on the peak. This 1/σ scaling results in a closer match for these

incident angles near the peak.

Extending this analysis to other surface-reflecting materials, Figure 69 compares

the peaks of the measured BRDFs at 3.39 µm for shot-blasted nickel, polished nickel,

and polished aluminum, and Fig. 70 contains data for grit-blasted nickel, shot-blasted

nickel, and polished nickel at λ = 10.6µm. The difference in the scaling is again quite
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Table 5.2. Norm of difference in BRDFs for each material measured. BRDF is scaled
by weight functions w given by each column header (“Raw” indicates no scaling.)

Raw cos θi cos θs 1/σ
λ = 3.39µm [1/sr] [1/sr] [1/sr] [1/sr]

Grit-blasted Ni 0.0437 0.0214 0.0210 0.00847
Shot-blasted Ni 0.0194 0.00879 0.00873 0.00288
Polished Ni 1190 619 619 276
Polished Al 2300 1390 1390 900
λ = 10.6µm

Grit-blasted Ni 0.285 0.194 0.194 0.135
Shot-blasted Ni 0.0831 0.0551 0.0552 0.0504
Polished Ni 1110 612 612 311
Polished Al 1170 608 608 282

noticeable, particularly near the peaks.

To quantify this result, Table 5.2 lists the norm of the difference between the

BRDF at all measured angles and the BRDF at θi = 40◦, scaled by one of three

weight functions w: cos θi, cos θs, and 1/σ. The “Raw” column indicates no scaling

(w = 1). This norm is computed as

||w1fr(θi1, θs1)− w2fr(40
◦, θs2)|| =

1

N

(

∑

θi1

∑

θs2

[w1fr(θi1, θs1)− w2fr(40
◦, θs2)]

2

)1/2

,
(140)

where

θs1 = sin−1 [sin 40◦ − sin θs2 + sin θi1]

= sin−1 [∆β(40◦, θs2) + sin θi1] ,

chosen such that ∆β(θi1, θs1) = ∆β(40◦, θs2), referred to below as ∆β. w1 = w(θi1, θs1)

and w2 = w(40◦, θs2) are the same weighting function w evaluated at the appropriate

(θi, θs) coordinates. N is the number of data points in the sum and does not depend

on the weighting function. (For example, at λ = 10.6µm, for grit-blasted Ni, N =

573; shot-blasted Ni, N = 576; polished Ni, N = 988; polished Al, N = 951. For
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Figure 69. Comparison between peak BRDF values in (a,b,c) direction cosine space and
(d,e,f) 1/σ scaled direction cosine space for: (a,d) shot-blasted nickel; (b,e) polished
nickel; (c,f) polished aluminum at λ = 3.39µm. All plots are relative to the peak at
θi = 50◦, and are divided by DHR to account for variation in reflectance.[8]

Figure 70. Comparison between peak BRDF values in (a,b,c) direction cosine space and
(d,e,f) 1/σ scaled direction cosine space for: (a,d) shot-blasted nickel; (b,e) polished
nickel; (c,f) grit-blasted nickel at λ = 10.6µm. All plots are relative to the peak at
θi = 50◦, and are divided by DHR to account for variation in reflectance.[8]
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λ = 3.39µm, values of N are similar. The value of N is independent of weight

function.) θi1 = {20◦, 30◦, 40◦, 50◦} are the incident angles measured. For example,

at specular (∆β = 0), the difference between the BRDF at (θi1 = 50◦, θs1 = 50◦)

and the BRDF at (40◦, θs2 = 40◦) is computed; similarly, away from specular (e.g.,

∆β = 0.2), the difference between the BRDF at (θi1 = 20◦, θs1 = 32.8◦) and the

BRDF at (40◦, θs2 = 57.4◦) is computed; this is done at all angles for which data

was collected in the domain |∆β| < 0.5. All entries in Table 5.2 are in BRDF units

(1/sr). In all cases, the norm of the difference in BRDF is lower when using the 1/σ

scaling; in many cases, the improvement is substantial.

5.5 Experimental Data Conclusions

A few conclusions can be drawn from the results presented in this chapter. First,

there is not likely to be a closed-form microfacet distribution function that can have

its width varied by a fixed power of wavelength to provide an accurate wavelength

scaling for a wide class of materials. This conclusion is supported by the difficulty of

the microfacet fit process, along with the wide variety in BRDF width as a function

of wavelength in the raw data analysis. Additionally, if a surface is very rough, there

is not likely to be a wavelength dependence in that region. There may possibly be

an approximately linear increase in BRDF width as a function of wavelength for a

highly polished surface, as was noticed in Figure 55. Recalling what was noted when

performing BRDF fits, the microfacet model was a better fit for rougher BRDF sam-

ples than it was for polished BRDF samples, suggesting there may be other changes

in the BRDF of a polished surface not captured by the microfacet model.

From the magnitude comparison and the experimental results described in [8], it

appears the cross section conversion term approximately accounts for the magnitude

variation in the BRDF data collected. This result presented in [8] further suggests

164



that there is a connection between the microfacet distribution function space and

direction cosine space, since data was plotted in terms of ∆β to align data measured

at different incident angles as well as to perform the magnitude alignment. This

begins to suggest a possible connection between the microfacet BRDF model and a

scalar wave optics BRDF model.

Taking these results as a whole, if progress is to be made on inserting a more

reliable wavelength dependence into a closed-form microfacet BRDF, it is necessary

to further advance BRDF theory, and in particular to better understand the connec-

tion between microfacet BRDF models and scalar wave optics BRDF models. This

connection is developed in detail in Chapter VI.
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VI. Theoretical Results

In Chapter III, microfacet BRDF models that are commonly used in computer

graphics, remote sensing, and scene generation are examined in detail. However,

when applying BRDF models to wavelength-sensitive applications such as HSRS,

the wavelength dependent behavior of the BRDF becomes of primary importance.

Chapter III showed a deficiency in the wavelength dependent behavior of the BRDF

observed using BRDF data from the NEF database and the MERL database. Chap-

ter IV took a brief detour to discuss measurement approach to flesh out the rest of

the background required to understand this chapter and to quantify uncertainty in

the BRDF measurements. After collecting and analyzing BRDF data for even simple

surface-reflecting samples such as nickel in Chapter V, it became apparent that the

closed-form microfacet BRDF models do not perform well as a material transitions

from highly diffuse to highly specular. Furthermore, it became clear from analysis

of the raw data that the problem is not simply limited to development of a different

microfacet distribution function, but rather that there is not an apparent fixed wave-

length scaling in the way the microfacet model interprets the BRDF, and that up to

now there is not a clear connection between microfacet BRDF models and scalar wave

optics BRDF models that would facilitate the ability to address these deficiencies in

a physics-based manner.

This chapter examines the microfacet model compared to scalar wave optics model

to understand the flaws in the microfacet model and develop a novel connection to

scalar wave optics theory. The cross section conversion term σ in the microfacet model

has a flaw discussed briefly in Chapter III in that it diverges as the BRDF approaches

grazing angles. This flaw is compensated for by inclusion of a shadowing and masking

term G, but that term is typically developed from a geometric optics perspective,

whereas the BRDF is fundamentally a physical optics scattering problem. However,
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as examined at the end of Chapter V, the cross section conversion term performs an

important function of scaling the BRDF magnitude in direction cosine space with

incident angle.

To determine how to better accommodate for the deficiencies noted in Chapter

V, and to understand from whence terms unique to microfacet BRDF models such

as the cross section conversion and the tan θh distribution function dependence arise,

this chapter compares the microfacet model to linear systems models of the BRDF

in detail. The MBK BRDF model is described briefly at the end Chapter III. From

that discussion, the polished and rough surface approximations of the MBK model is

compared to the microfacet model in a novel manner that has not been done in prior

literature[10]. This comparison is crucial because it provides an understanding of:

what the microfacet model actually represents, how to modify a microfacet BRDF to

remove the cross section conversion term, how to modify the microfacet model as a

surface becomes more smooth, and how to connect microfacet coordinates to linear

systems coordinates. Additionally, many of the results obtained from the purely

theoretical analysis to be performed in this chapter are found to have been observed

in Chapter V, further validating the conclusions arrived at in this chapter. Finally,

at the end of this chapter, rough surface BRDF data are fitted to a novel BRDF

function in a manner that fits data better than the original microfacet BRDF models,

and avoids the difficulty of a cross section conversion term, while not adding any

additional fitting parameters to the computation. The substitution is generic enough

to apply to any BRDF model that currently uses the Fresnel equation F .

This discussion is largely based on a paper submitted to Optics Express [10], and

based in part on a conference paper in [7]. The theoretical developments in this

chapter, and the observations that are tied to the experimental data collected in

Chapter V, represent a novel contribution to the theoretical modeling of the BRDF.
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6.1 Comparing Microfacet and Scalar Wave Optics Models

To compare the microfacet model to the MBK model, the ratio of the microfacet

BRDF to the MBK BRDF is taken in both the very rough approximation and the

smooth surface approximation, assuming an isotropic sample. Additionally, assume

surface statistics (surface height and autocorrelation length) follow a Gaussian distri-

bution, as this is required to arrive at a closed-form expression for the MBK model.

Recall from Chapter III that the GHS scalar wave optics BRDF model reduces to

the MBK model in the limit of a polished or very rough surface. The MBK model is

presented in Equation (113) in the form of an ASF, which can be multiplied by the

polarization factor Q given by Equations (100)-(104) to convert it to a BRDF; this

polarization factor Q is a perturbed version of the Fresnel equation for surfaces that

are not infinitely smooth. In limiting cases of a polished or very rough surface, the

summation can be written as a single term only.

First, consider a polished surface; σs << λ and as such only the m = 1 term of

the sum in Equation (113) is significant. Recall that g was defined in Equation (110)

to be related to σs/λ. In [37], Krywonos defines a smooth surface as g(θi, θs) < 0.025,

which results in less than 1% error compared to the infinite series summation when

θi ≤ 70◦. Assuming Gaussian surface statistics (surface height σs and correlation

length lc), the polished surface MBK BRDF model is given as [37, 38]

fp =
4π3l2cσ

2
sQ(cos θi + cos θs)

2

λ4
exp

[

−
(

πlcηr
λ

)2
]

, (141)

where exp(−g) ≈ 1 since σs << λ for a polished surface, and K ≈ 1 for a polished

surface, as shown in [38]. As a reminder, ηr represents the angular dependence in

direction cosine space, given by Equation (99).

Similarly, the very rough surface approximation to MBK can be written as [37, 30]
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fvr =
KQl2c

4πσ2
s(cos θi + cos θs)2

exp

[

−
(

lc
2σs

)2(
ηr

cos θi + cos θs

)2
]

, (142)

where again the polarization factor Q is used to convert the ASF to a BRDF, and

Equations (99) and (110) are also used. In [37], Krywonos defines very rough as

g(θi, θs) > 800, to result in less than 1% maximum error as compared to the infinite

summation when θi ≤ 70◦.

In [38, 63], careful measurements of material surface statistics were made by

Stover. The measured surface statistics were used to compute the Power Spectral

Density (PSD) of each surface. Stover then measured the BRDF of these surfaces.

The GHS BRDF model was used to compute the PSD from the BRDF data. The

computed PSD using GHS theory closely matched the measured surface statistics of

the surfaces. Since GHS matches MBK in the very rough or very smooth approxima-

tion, fp and fvr from MBK theory are considered to be accurate physical models in

the limit of a polished or very rough surface, respectively.

Let fµ represent the microfacet model BRDF. Since MBK theory can be used

to predict accurate surface statistics, the ratios fµ/fp and fµ/fvr would equal 1 if

the microfacet model also modeled physical truth. Differences from 1 indicate devia-

tions in the microfacet model from the more physical MBK model, and may suggest

how to alter the microfacet model to improve its accuracy while still maintaining a

closed-form approximation to the BRDF. Since the scalar wave optics BRDF does

not distinguish between surface reflection and volumetric scattering, this analysis is

helpful in understanding the surface reflection terms of the BRDF.
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Very Rough Surface Comparison.

The ratio of the microfacet BRDF fµ to the very rough surface MBK BRDF fvr

is

fµ
fvr

=
( ρs
2K

)

(

2FG

Q

)(

(cos θi + cos θs)
2

4 cos θi cos θs cos4 θh

)

(

σs
√
2

lcσg

)2

×

exp

[

−
(

tan2 θh
2σ2

g

− l2c
4σ2

s

η2r
(cos θi + cos θs)2

)]

.

(143)

The exponential term is analyzed first. The angular dependence is contained in

two terms: tan2 θh from the microfacet model and η2r/(cos θi + cos θs)
2 from MBK.

Although these terms were derived with a completely different physical interpretation

(geometric optics versus physical optics), these terms are shown here to be equal at

all incident and scattered angles, in-plane and out-of-plane. Starting with Equation

(35) and using basic trigonometry identities to rewrite cos θh in terms of tan θh,

tan2 θh =
4 cos2 θd − (cos θi + cos θs)

2

(cos θi + cos θs)2
. (144)

The denominator already matches the denominator of η2r/(cos θi + cos θs)
2, so it is

sufficient to show that the numerator equals η2r as given by Equation (99). This is

performed by use of the double angle formula for cos(2θd) and adding zero:

4 cos2 θd − (cos θi + cos θs)
2 = 2 + 2(2 cos2 θd − 1)− (cos θi + cos θs)

2

= 2 + 2 cos 2θd − (cos θi + cos θs)
2

= sin2 θi + cos2 θi + sin2 θs + cos2 θs + 2 cos 2θd − (cos θi + cos θs)
2

= sin2 θi + sin2 θs + 2 sin θi sin θs cosφs = η2r ,

(145)

where in the last line, Equation (34) was used to obtain η2r . Thus, linear systems

170



direction cosine space for a very rough surface was shown to be exactly equal to the

geometric microfacet model bisector space:

tan2 θh =

(

ηr
cos θi + cos θs

)2

. (146)

Note that this function can result in any value in the range [0,∞). This result will

become important in contrast to the polished surface result.

From geometric optics σg is commonly thought of as the Gaussian width of the

probability distribution of microsurface normals. Mathematically, the microfacet sur-

face normals can be calculated from the surface height profile and is related to the

normal to the derivative of the surface height profile; however, only the probability

distribution of the surface profile is known. Instead, Equation (143) can be solved for

σg for a very rough surface using the remaining terms in the exponential, obtaining

σg,vr =
σs
√
2

lc
. (147)

Recall σs represents the width of the Gaussian in the vertical (height) direction and lc

represents the width of the Gaussian in the horizontal (correlation length) direction.

This result is identical to the result obtained in the Hyde polarized BRDF model’s

parameterization of the Gaussian distribution given in [33] that was derived using

the Method of Moments, suggesting the methodology employed in this comparison is

correct. However, Equation (147) only holds for the very rough surface approximation.

A different result for the polished surface analysis is obtained later in the chapter in

Equation (153), showing this interpretation of σg is only valid for very rough surfaces,

and is not true in general. This point is discussed in more depth after comparing the

polished surface approximation to the microfacet model.

Although it may be tempting to conclude that the BRDF width should have no
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wavelength dependence from this result, keep in mind the very rough approximation

is only valid for g > 800, and that g ∝ (σs/λ)
2. As λ increases, the very rough

approximation becomes invalid.

Equation (143) has now simplified to

fµ
fvr

=
( ρs
2K

)

(

2FG

Q

)(

(cos θi + cos θs)
2

4 cos θi cos θs cos4 θh

)

. (148)

Direct comparisons between Q and F vary significantly in magnitude. Stover explains

the s polarization, but does not suggest an approximation valid at all angles and

indices of refraction for the p polarization (and thus the unpolarized term Q = Qs +

Qp), although he does present approximations for a few limiting cases [62]. To improve

on this understanding, the polarization factor Q is analyzed from the perspective of

comparing it to not only Fresnel reflectance, but also the remaining angular terms

from the microfacet model, since the microfacet model uses F instead of Q.

Reference [7] shows, for in-plane angles, there is an approximate relationship S

between the unpolarized Fresnel reflectance and the polarization factor, Q, given as

S =
4 cos θi cos θs cos

4 θh

(cos θi + cos θs)
2 ≈ 2F

Q
, (149)

where the factor of 2 arises from Q = Qs+Qp = Fs+Fp = 2F if θi = θs and φs = 180◦

(standard Fresnel reflection).

In [7], this relationship for S was observed to be valid when θi and θs are small;

those results are discussed here. Consider the BRDF in-plane. The ratio 2F/Q

was plotted along with the novel S approximation presented in Equation (149) in

Figure 71 for ñ = 4.0605 + 12.497i (Ni at 3.39 µm), and in Figure 72 for ñ = 1.4091

(Fused Silica at 3.39 µm), to illustrate two cases with significantly different indices

of refraction. Each figure is a function of θs, with each plot representing the in-plane
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slice of 2F/Q and S at a different incident angle in 15◦ increments.

In the analysis in [7] and presented above, only in-plane data was plotted, and only

at two incident angles. This plot will now be extended to all angles in the hemisphere

using the relative difference for out-of-plane data, where the relative difference is

defined as

Rd =
|2F/Q− S|

2F/Q
. (150)

Figure 73 shows results at θi = (15◦, 30◦, 45◦, 60◦) for five different indices of refrac-

tion. The five different indices of refraction are chosen to represent a wide range of

materials: high n and high κ: ñ = 4+10i; low n and low (but nonzero) κ: ñ = 1.5+ i,

low n and zero κ: ñ = 1.4, moderate n and κ: ñ = 1.7+5i, and n < 1: ñ = 0.25+3i.

When θi = θs and φs = 180◦ (specular reflection), Rd = 0. In general, even out-

of-plane, the error is relatively small if θi and θs are both small, but increases when

either θi or θs is large. This result suggests that the cross section conversion term

σ(θi, θs) in Equation (37) and the microfacet distribution normalization 1/ cos4 θh in

Equation (44) both arise from using F instead of Q, and that the deviation at large

angles is due to excluding the geometric attenuation, G.

Since BRDF is fundamentally a physical optics problem and not a geometric optics

problem, better approximations for G could be derived by solving 2FG/Q = S for

G instead of from the geometric optics approach detailed in [32]; such a solution is

beyond the scope of this dissertation, but is suggested for future work. Alternatively,

Q does have a closed-form solution (although it is substantially more complex than

F ). For increased accuracy, Q/2 could be used in place of F using this observed

relationship; this approach is explored at the end of this chapter. Although Q was

derived for polished surfaces, this result suggests Q is still a better approximation

than F for very rough surfaces. This novel result is used at the end of this chapter
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Figure 71. Comparison of the ratio of 2F (θd)/Q(θi, θs) and S for Nickel at λ = 3.39µm
(ñ = 4.0605+ 12.497i)[54] with incident angles of: (a) θi = 0◦, (b) θi = 15◦, (c) θi = 30◦, (d)
θi = 45◦, (e) θi = 60◦, and (f) θi = 75◦.[7]

Figure 72. Comparison of the ratio of 2F (θd)/Q(θi, θs) and S for fused silica at λ = 3.39µm
(ñ = 1.4091)[40] with incident angles of: (a) θi = 0◦, (b) θi = 15◦, (c) θi = 30◦, (d) θi = 45◦,
(e) θi = 60◦, and (f) θi = 75◦.[7]
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Figure 73. Surface plot of relative difference Rd for four different indices of refraction:
(a-d) ñ = 4 + 10i, (e-h) ñ = 1.5 + 1i, (i-l) ñ = 1.4, (m-p) ñ = 1.7 + 5i, (q-t) ñ = 0.25 + 3i.
For each index, four different incident angles are plotted: (a,e,i,m,q) θi = 15◦; (b,f,j,n,r)
θi = 30◦; (c,g,k,o,s) θi = 45◦; (d,h,l,p,t) θi = 60◦. The plots are all symmetric about
φs = 180◦. The dotted black line at φs = 180◦ on the right side of each plot represents
in-plane scatter. In each case, Rd = 0 when θi = θs and φs = 180◦; Rd is generally small
when θi and θs are small.
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to replace the cross section conversion term, microfacet normalization, and geometric

attenuation with Q, improving the fit quality of the BRDF to rough surfaces without

adding any additional fitting parameters to microfacet BRDF models.

Polished Surface Comparison.

For the polished surface comparison, the analysis follows the same procedure as

above, except using fp in place of fvr. This analysis is first performed in [7] for GHS,

but is altered slightly to use the notation in MBK (which GHS reduces to in the

polished or very rough limits) in [10]. The discussion here most closely follows the

latter article.

The ratio fµ/fp results in

fµ
fp

=
ρsλ

4FG

32π4l2cσ
2
sσ

2
g cos θi cos θs cos

4 θh
×

1

(cos θi + cos θs)2
exp

[

−
(

tan2 θh
2σ2

g

− π2l2cη
2
r

λ2

)]

.

(151)

Compared to the very rough surface approximation, the angular dependence of the

exponential terms has changed, so the microfacet angular dependence is no longer

equal to the linear systems angular dependence. From Equation (146), note that

instead of the angular dependence being simply tan2 θh, the angular dependence scales

as

η2r = (tan2 θh)(cos θi + cos θs)
2

= sin2 θi + sin2 θs + 2 sin θi sin θs cosφs,

(152)

where the last line is from Equation (99). This last line shows that the value of η2r

ranges between [0, 4]. This is in contrast to the range of [0,∞) observed in the very

rough case, because in the very rough case the angular dependence was ηr/(cos θi +

cos θs)
2 and not just ηr.
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Additionally, a different relationship for σg is observed, given as

σg,p =
λ

πlc
√
2
, (153)

which varies with wavelength, unlike in Equation (147). This shows the microsurface

normal interpretation in the microfacet model does not hold for a polished surface,

since the microsurface normal distribution should not vary with wavelength. For this

reason, when adding a spectral dependence to the BRDF, the physical notion of a

microfacet normal distribution is not valid; instead, a surface scatter distribution

function is used to take its place.

Additionally, the remaining angular terms outside the exponential are of a some-

what different form in the polished surface ratio. In particular, the (cos θi + cos θs)

term is now raised to the -2 power instead of the +2 power, and there is an explicit

λ4 dependence in the ratio.

Validity of Microfacet Model.

The results in this chapter show that the microfacet model is valid in the very

rough approximation, but is not valid in the polished surface approximation. To

physically understand this phenomenon, consider a mostly flat surface with a regular

pattern, such as a reflective diffraction grating. Properly accounting for surface scatter

off such a material would require including wave optics effects. Although a polished

surface may not have a perfectly periodic set of features as a diffraction grating, it still

is a fairly smooth surface with periodic imperfections, suggesting a more significant

role for wave optics. In fact, this can be seen in the experimental results presented

in Chapter V, where there are periodic humps due to diffraction that are observed;

see, for example, Figure 69.

On the other hand, in the limit of a very rough surface, consider the scalar wave
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optics treatment (which treats all scatter as a phase screen). Such a phase screen

would be arranged in a randomized distribution, which would tend to average out the

diffractive effects that would arise from a wave optics approach. Again, this effect

can be seen from the data presented in Chapter V; see Figure 49.

Original Beckmann-Kirchhoff Modification.

In the original BK theory, a geometrical factor F 2
bk was used instead of K, and

was described as a geometrical term [2]. Although Krywonos used K in place of F 2
bk

in MBK, F 2
bk is much simpler to compute and may be desirable in some applications

of BRDF if a more complete understanding of its role were developed. That purpose

is explored in this section. F 2
bk was presented in Chapter III as [2]

F 2
bk =

(

1 + (cos θi cos θs + sin θi sin θs cosφs)

cos θi(cos θi + cos θs)

)2

.

Fbk is not to be confused with Fresnel reflectance; it represents a geometric term that

does not depend on index of refraction. Its connection to the microfacet model was

not clear from prior work on MBK in [2, 30] because it was formulated by Beckmann

prior to formal definition of the BRDF; in this section, an explanation for this term

is presented and a minor modification for this term is proposed to ensure the term

obeys Helmholtz reciprocity of the BRDF. Rewriting F 2
bk in microfacet coordinates

θh and θd, it is given as

F 2
bk =

cos2 θd
cos2 θi cos2 θh

. (154)

Using basic trigonometric manipulations to put S in microfacet coordinates, this term

can be rewritten as
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1

S
=

cos2 θd
cos θi cos θs cos2 θh

≈ Q

2F
. (155)

These equations suggest the purpose of F 2
bk is to approximate Q/2 so that when

BK theory is multiplied by the Fresnel equation F , it scales approximately correctly.

However, there is an issue with F 2
bk as presented. When θi 6= θs, F

2
bk does not obey

Helmholtz reciprocity and differs from this approximation for Q/2F . For this reason,

using 1/S is suggested rather than the original F 2
bk term; using 1/S makes the term

functionally equivalent to the cross section conversion and microfacet distribution

normalization, with the modified angular term that arises from g in MBK.

BRDF Scaling by 1/σ.

In [8], which was discussed in Chapter V, experimentally measured BRDF data

is presented in direction cosine space, which aligns BRDF data at all incident angles,

other than differing in height. Multiplying measured BRDF data by a term inspired

by the microfacet cross section conversion, cos θi cos θs, results in an approximate

height alignment. The 1/S term written in microfacet coordinates above explains

why the scaling in direction cosine space that was observed experimentally in [8]

works. When at the specular peak, cos θh = 1 (θh = 0). Near the specular peak, θh

is small and thus cos θh ≈ 1. Thus, S ≈ cos θi cos θs as is observed in [8] to be the

scaling term that aligned the BRDF height data in direction cosine space.

In this section, the very rough surface approximation of MBK (equivalent to the

very rough surface approximation of GHS) was compared to the general form of the

microfacet model. In the rough surface approximation, the angular dependence of

MBK (and thus also of GHS) was shown to be exactly equal to the angular dependence

in the microfacet distribution function. The remaining angular terms were compared

to the ratio of the standard Fresnel term with the polarization factor Q. This led
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to a novel approximation for Q, and suggested where certain terms present in the

microfacet BRDF models arise. In particular, part of the microfacet distribution

function normalization and the cross section conversion term were found to result

from using standard unpolarized Fresnel reflectance F instead of the polarization

factor Q. The approximation was found to be relatively accurate, except when θi or

θs is large; in the microfacet model, this region is where there would be significant

shadowing and masking. Since surface scattering is fundamentally a physical optics

problem, this observation suggests that instead of attempting to derive the shadowing

and masking term from geometric optics, better results may be obtained by developing

a modification to the ratio 2F/Q, particularly at large incident or scattered angles.

Alternatively, it is now possible to modify the microfacet model to use Q instead of

F using this relationship.

Next, key differences between the polished surface analysis that were detailed in [7]

and the rough surface analysis developed in this Chapter are presented. This resulted

in a modification to the angular and wavelength dependencies in the microfacet model

for a polished surface, and showed the breakdown of a geometric model for BRDF.

Additionally, the original BK geometric term F 2
bk was analyzed, developing an ex-

planation for this term relative to both the microfacet and linear systems models. A

modification to F 2
bk in the BK model was also proposed. The physical insight devel-

oped in this Chapter is expected to lead to future development of better closed-form

approximations to the BRDF that preserve the relative simplicity of the microfacet

model, while increasing the fidelity of the microfacet BRDF approximation.

6.2 Experimental Validation of Results

The experimental results presented in Chapter V led to some questions that may

now be answered using this comparison. Consider the angular space of the microfacet
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distribution function. In the case of a very rough surface, Equation (146) shows that

the angular dependence of the microfacet distribution function is equal to the angular

dependence of the scalar wave optics model. This result explains why the microfacet

model fits rough BRDF data well, such as was presented in Figure 49 using the

Cook-Torrance BRDF model.

Additionally, with this connection of microfacet theory to scalar wave optics the-

ory, it is now possible to directly compare all terms used in both models, representing

a novel contribution of this dissertation to BRDF theory. For example, the somewhat

troublesome cross section conversion term was found to arise from using F instead of

Q in the microfacet model. Q is a closed form equation (although admittedly its form

is far more complex than F ). To avoid the problem of having a model that diverges

at grazing angle, as well as improving upon the angular dependence of the model, a

microfacet model such as the Cook-Torrance model can now be rewritten by solving

Equation (149) for F , resulting in

fr(ω̂i, ω̂s) =
ρsQ(ω̂i, ω̂s)Db(θh) cos

4 θh
2(cos θi + cos θs)2

, (156)

where the cross section conversion term is no longer present, so the shadowing and

masking term is no longer required since the BRDF no longer diverges at grazing

angles.

Using this novel version of the Cook-Torrance BRDF, somewhat better results

were obtained for the BRDF fitting at larger θi and θs (where the error between

F and Q is largest). For example, consider the rough Al sample at 6.4 µm. The

standard Cook-Torrance fit using the ln error metric is shown in Figure 74. Using the

alternative version proposed in Equation (156) with the same ln error metric, there is

little change in the best fit at small angle (as the ratio of F to Q has very little error

at small angle), but the fit becomes noticeably better at large angle, particularly for
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θi = 50◦, without decreasing accuracy at smaller angle; see Figure 75. This process

was also performed for the Infragold R© sample at 5.2 µm, with results plotted in

Figures 76 and 77; the results are similar, although since the Infragold R© sample is

even more diffuse it is easier to see the impact of using Q in the microfacet model at

larger values of θs.

The fits appear to be improving, particularly for higher incident and scattered

angles, but the next question that arises in the analysis is whether the fits are both

within the margin of error in the measurement. This is addressed in Figures 78 and

79 for the rough Al data at 6.4 µm, and in Figures 80 and 81 for the Infragold R©

data at 5.2 µm. For the rough Al data, the Q term improves upon the model quite

clearly. For the Infragold R© data, it appears there may be a region near θs = 0 where

the original term performs slightly better; however, it is within the measurement

uncertainty so it is not statistically significant. Overall, there still is improvement

in the fit with the modified Cook-Torrance model using Q in place of F when all

scattered angles are considered, as the improvement for θs > 20◦ is more significant.

There also appears to be a minor improvement in the modified Cook-Torrance model

using Q in place of F for θs < −20◦ in this sample.

In both Figures 79 and 81, it appears the minimum value of the measured data

is not fitted well to either the original Cook-Torrance model or the modified Cook-

Torrance model. This is because for purposes of this comparative analysis, the Lam-

bertian term was not used in the fitting, as can be seen in Equation (156). This choice

was made for fitting because the ratios in Equations (143) and (151) did not include

the diffuse term. The diffuse term would simply add an overall offset that would

compensate for this offset. Physically, this would likely be due to multiple bounces

off a rough surface. Note that the modified form with Q in place of F still does not

make the model fit worse to the data, even in this region.
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Figure 74. BRDF for rough Al at 6.4 µm, fitted to Cook-Torrance BRDF, using ln error
metric, g(x) = ln(x).

Figure 75. BRDF for rough Al at 6.4 µm, fitted to modified Cook-Torrance BRDF
using Q in place of F, using ln error metric, g(x) = ln(x).
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Figure 76. BRDF for AFIT Infragold R© sample at 5.2 µm, fitted to Cook-Torrance
BRDF, using ln error metric, g(x) = ln(x).

Figure 77. BRDF for AFIT Infragold R© sample at 5.2 µm, fitted to modified Cook-
Torrance BRDF using Q in place of F, using ln error metric, g(x) = ln(x).
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Table 6.1. Comparison of the norm of the relative difference, d, when fitting BRDF
data to the Cook-Torrance model using the ln error metric, and the relative difference
using the Modified Cook-Torrance model (using Q instead of F ), for multiple diffuse
samples, at all wavelengths measured. The largest relative uncertainty at any single
data point for any incident and scattered angle is also reported.

Material λ (µm) Cook-Torr. Mod. Cook-Torr. Max. Rel. Uncertainty
Rough Al 3.39 3.23 3.10 0.138

5.20 5.87 5.70 0.153
5.63 5.30 5.26 0.163
6.40 4.09 3.62 0.137
8.00 4.37 4.08 0.160
10.60 7.36 7.16 0.148

Infragold R© 3.39 4.43 3.82 0.149
5.20 5.32 4.57 0.137
5.63 4.57 3.47 0.142
6.40 4.25 3.20 0.139
8.00 6.79 6.56 0.105
10.60 4.80 4.09 0.149

Silver paint 3.39 6.60 4.97 0.140
8.00 7.21 6.59 0.0899
10.60 6.85 6.02 0.117

This method can be extended to all wavelengths by calculating the relative error

between the best fit and the BRDF data at all wavelengths. The norm of the relative

difference is reported as the fit error:

d =

∣

∣

∣

∣

∣

∣

∣

∣

fr − fµ
fr

∣

∣

∣

∣

∣

∣

∣

∣

, (157)

where fr represents the measured BRDF data and fµ represents the best fit of the

BRDF model to the BRDF data. The results using the best fit to the standard Cook-

Torrance BRDF model compared to the modified Cook-Torrance model using Q in

place of F are given in Table 6.1.

In every case measured, the BRDF fit to rough samples improved when using

the modified Cook-Torrance BRDF with Q in place of F as proposed in Equation

(156). The improvement in this BRDF fitting across all three rough samples that
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were measured and at all wavelengths that were measured further suggests that the

theoretical developments in this chapter are valid, since the microfacet model was

shown in the theoretical development to model rough samples. Furthermore, these

results suggest it is not necessary to use G if Q is used. Therefore, for rough materials,

using the modified Cook-Torrance BRDF model presented in Equation (156) instead

of the standard Cook-Torrance BRDF model is recommended to obtain a better fit.

On the other hand, as a surface becomes more highly polished, the angular depen-

dence of the scalar wave optics model changes to a form not equal to the microfacet

distribution function tan2 θh dependence, as was shown in Equation (152). This result

suggests that the microfacet model would not be a good fit to the BRDF of a polished

sample, which was another observation noted in Chapter V.

Furthermore, there is an issue with how the specular peak does narrow. Although

the exact solution is only obtained at the very rough and polished approximations,

it was noted that Equation (146) ranges over all non-negative values [0,∞), but the

polished exponential only ranges [0, 4]. This reduction in the sampling space of the

exponential would result in a more narrow specular peak, but the more narrow peak

would not necessarily occur as a constant function of λ, providing some indication

that the results observed in the prior section may also be valid. Although the two

limiting cases for width of the specular lobe presented in this dissertation are no wave-

length dependence of the specular lobe (in the very rough approximation) and linear

wavelength dependence of the specular lobe (in highly polished approximation), the

experimental data shows the variation is not linear in between, and is not described

by scaling the specular lobe width by a constant power of λ. However, direct fitting

to the polished surface BRDF data is not possible because Gaussian surface statistics

were assumed for the surface height and correlation length. Despite that, a look at

the raw width scaling for the polished sample is possible.
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Recall that in Figure 55, and in the raw data presented in Figure 66, there ap-

peared to be an increase in specular lobe width as λ increased in the limit of a highly

polished sample (as the polished Ni sample had a NIST-traceable certificate stating

its surface roughness was 0.071 µm, and was the smoothest sample measured). A

summary of all of the values of g for the Ni samples with NIST-traceable surface

statistics are presented in Table 6.2. The table reports the value at the specular lobe,

where θi = θs, but this value varies with scattered angle as well, as given by Equation

(110) by approximately 50% to 150% of the reported value, depending on scattering

angle. For the polished Ni surface, the polished approximation (g < 0.025) is reached

beginning with λ = 4.4µm for certain incident angles. This region also appears to

be where the width of the specular lobe is directly proportionate to λ in Figures 55

and 66. This observation suggests that the theoretical result presented in Equation

(153) is valid. For the very rough samples presented in Figures 57, 58, and 64, there

was no wavelength dependence observed, which is validated by the theoretical result

obtained in Equation (147).

Each of these results from theory is consistent with the experimental results in

the prior section. This consistency between experimental data presented in Chap-

ter V and the novel theoretical development presented in this chapter suggests the

interpretation of the microfacet model developed in this chapter is correct.

Additionally, recall from Chapter V that the BRDF width analysis was determined

to be flawed because there is a second specular peak that appears to emerge from

a more broad BRDF shape. This theoretical comparison suggests that it may be

imprecise to directly compare the BRDF width at one incident angle with the width

at another incident angle for another reason. The value of g depends on not just

surface roughness and wavelength, but also on incident and scattered angle. The g

term determines the number of terms required to limit the error in truncating the
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Table 6.2. Values of g for Ni samples with known surface statistics. For each incident
angle, the value reported is for specular scatter (θs = θi).

Material λ (µm) θi = 20◦ θi = 30◦ θi = 40◦ θi = 50◦

Pol. Ni 3.39 0.0612 0.0519 0.0406 0.0286
0.071 µm 4.40 0.0363 0.0308 0.0241 0.0170

5.20 0.0260 0.0221 0.0173 0.0122
5.63 0.0222 0.0188 0.0147 0.0104
6.40 0.0172 0.0146 0.0114 0.00803
8.00 0.0110 0.00933 0.00730 0.00514
10.60 0.00626 0.00531 0.00416 0.00293

Shot Ni 3.39 75.8 64.4 50.4 35.5
2.5 µm 4.40 45.0 38.2 29.9 21.1

5.20 32.2 27.4 21.4 15.1
5.63 27.5 23.4 18.3 12.9
6.40 21.3 18.1 14.1 9.96
8.00 13.6 11.6 9.05 6.37
10.60 7.76 6.59 5.15 3.63

Grit Ni 3.39 223 190 148 104
4.29 µm 4.40 133 113 88.1 62.0

5.20 94.9 80.6 63.1 44.4
5.63 81.0 68.8 53.8 37.9
6.40 62.7 53.2 41.6 29.3
8.00 40.1 34.1 26.6 18.8
10.60 22.8 19.4 15.2 10.7

infinite sum given by Equation (110), which may explain why there was variety in

the BRDF width with incident angle for the same sample and wavelength.

6.3 Summary of Theoretical Results

The terms of the scalar wave optics BRDF model are now compared to the mi-

crofacet model, enabling the scalar wave optics model to be rewritten in microfacet

coordinates (assuming Gaussian statistics) for a very rough surface (g > 800) as

fvr =
KFG

4 cos θi cos θs

(

l2c
2πσ2

s cos
4 θh

)

exp

[

−
(

lc
2σs

)2

tan2 θh

]

, (158)

and for a polished surface (g < 0.025),
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fp =
(2π)3FG(cos θi + cos θs)

4

4 cos θi cos θs cos4 θh

(

σ2
s l

2
c

λ4

)

×

exp

[

−
(

πlc
λ

)2

tan2 θh(cos θi + cos θs)
2

] (159)

The infinite summation can also be written in microfacet coordinates as:

fMBK =
πFG(cos θi + cos θs)

2Kl2c
2λ2 cos θi cos θs cos4 θh

exp(−g)×
∞
∑

m=1

gm

m!m
exp

(

− l2c
4mλ2

tan2 θh(cos θi + cos θs)
2

)

.

(160)

Recall that g was defined in Equation (110).

The theoretical results developed in this chapter of the dissertation represent a

significant step forward in understanding the microfacet model of the BRDF. For

very rough surfaces, the microfacet model theory developed in this chapter showed

the BRDF in a manner that does not vary significantly with wavelength. For polished

surfaces, on the other hand, the microfacet model theory developed here showed con-

siderable deficiency in the way the angular dependence is modeled, and additionally

showed a wavelength-dependent relationship for the width, indicating a fundamental

breakdown in the microfacet model. The theory developed in this chapter also showed

from where the microfacet BRDF model terms arise as related to physical optics the-

ory, enabling a proposed modification to the model to use the polarization factor Q

rather than the standard Fresnel reflectance F . BRDF data was then presented that

shows this use of Q in place of F improves the quality of fit of the BRDF to rough

surface data, particularly at larger θi or θs. These observations on variation of the

specular lobe width in the very rough and polished limits have been validated with

the measured BRDF data. Since BRDF data and novel microfacet BRDF theory de-

velopments are both indicating similar phenomena, that leads to increased confidence

in these results. Because all terms of a microfacet BRDF model are now quantita-
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tively related to terms in a scalar wave optics model, a basis for further analysis to

understand the spectral variation for realistic surface statistics has been developed.
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VII. Conclusion

As discussed in Chapter I, the overarching problem to be solved by research in

the area of spectral BRDF approximation is to develop a closed-form BRDF approx-

imation that accounts for the wavelength-dependent properties of the BRDF, while

accurately describing the BRDF properties of a wide class of materials, using a min-

imal number of fitting parameters. The research undertaken in this dissertation is

summarized in a flow chart presented in Figure 1.

The problem was broken down into the following components:

• Determine whether BRDF may have a significant impact on HSRS using a basic

scene model (Chapter II and [6])

• Catalog current closed-form, physics-based BRDF models (Chapter III and [5])

• Determine whether current models can be modified in a simple manner to insert

a wavelength-dependent term (Chapter V)

• If a simple modification is not possible, determine how closed-form models relate

to more accurate (but more computationally complex) physical optics BRDF

models to understand how to arrive at novel closed-form approximations (Chap-

ter VI, [7], [8], and in [10] develop the theory, relating all components of the

microfacet model to scalar wave optics models)

• Test novel closed-form approximations to the BRDF (Chapter VI begins to

address this by proposing a novel BRDF based on theoretical developments

that fits better to rough experimental data)

• Propose a novel, physics-based, closed-form approximation to the BRDF suit-

able for HSRS that works at a wide range of wavelengths and for a wide class

of materials (Future work)
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These points will be summarized first, followed by suggestions for future work.

7.1 Summary of Key Results

This dissertation represents a significant contribution to all of the points above

except the final point, although the theoretical work in Chapter VI does give the

limiting boundaries of such an approximation and sets a roadmap for how this can be

expanded. Initially, the approach taken was to modify the microfacet BRDF model

to incorporate a simple, but nonlinear, wavelength scaling. Since materials tend to

become more specular as the wavelength increases, one potential area to add this

wavelength scaling was in the distribution function. To determine the form of such

a wavelength scaling, experimental data was collected for 12 different samples at up

to seven different wavelengths per sample, using the AFIT CASI R© system that is

capable of measuring BRDF data spanning approximately 10 orders of magnitude,

from 10−4 to 106 1/sr. Initially, polarimetric BRDF data was collected for a subset

of the samples; these results showed that, to obtain unpolarized BRDF data, a less

cumbersome measurement approach could be taken. This approach was detailed in

Chapter IV.

These experimental results were compared to the Cook-Torrance microfacet model,

which was chosen because Ngan concluded it was consistently one of the best micro-

facet models when fitting to data in the MERL database[47]. Fitting the BRDF data

to this model, even at a single wavelength, resulted in fitted values that differed from

measured values by nearly an order of magnitude for a surface-reflected material with

average roughness on the order of a wavelength, using either the linear or ln fit met-

rics (see Figures 38 and 39). The only exception was that the fits were consistently

accurate when the surface was rough (see Figure 49), but in that regime there was

not an observed wavelength dependence in the width of the specular lobe (see Figure
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57). This observation led to applying the Hyper-Cauchy distribution function in place

of the Gaussian distribution function. When fitting BRDF functions to the MERL

nickel data, the Hyper-Cauchy distribution was observed in [5] to greatly improve

fit quality. In this work, the Hyper-Cauchy distribution used in Cook-Torrance did

improve fit quality to the experimental data, but the fits still differed from measured

results by over 100% for a surface with average roughness on the order of a wavelength

(see Figure 44).

To determine if the problem was simply that the wrong model was being used, a

method was developed to examine only the BRDF width of the specular lobe using

the raw experimental data. The mean and standard deviation of the BRDF width

at all wavelengths for all materials were calculated and plotted, showing the wave-

length dependence was not straightforward. For very rough materials, there was

no wavelength dependence, while some materials exhibited a very strong wavelength

dependence. Typically, glossy (but not polished) materials exhibited the strongest

wavelength dependence, but even then it was not a function of a constant power of

λ. This result suggested there was a fundamental issue with microfacet models that

had not been rigorously developed in BRDF literature.

After recognizing this difficulty with determination of the spectral dependence

of the BRDF, the raw data was examined closer. For very rough samples, little

wavelength variation was observed in the raw data. For the most highly polished

sample measured, a gradual increase in the specular lobe width as a function of

wavelength is observed. Between these regions, it appeared there was a specular

lobe that was emerging from a broader (diffuse) base of the BRDF. This observation

suggested that the BRDF width metric used may not be appropriate to describe the

behavior of the BRDF, since in this transition region, the raw width analysis may

be measuring either the broad, diffuse BRDF or the emerging specular lobe. This
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result also suggested that the microfacet BRDF model may have inherently the wrong

form, since a single microfacet distribution function does not model the emergence of

a narrow specular lobe superimposed upon a more diffuse BRDF component. This

observation is particularly important when applying the BRDF in the LWIR, as

materials that might appear to be very rough in the visible spectrum may enter this

intermediate region at the much longer LWIR wavelengths.

Then, the role of the cross section conversion term, σ, was examined, following

the analysis in [8]. This term in the BRDF is simpler to compute than analogous

terms in scalar wave optics theory, but has the unfortunate property of diverging at

grazing angles. From [8], as discussed at the end of Chapter V, the role of this term

is to align the magnitude of the BRDF in direction cosine space for various incident

angle data.

These observations showed considerable room for improvement in understanding

what the microfacet model represents and how it related to scalar wave optics mod-

els. This comparison was detailed in Chapter VI, [7], and in [10]. The connections

between microfacet theory and scalar wave optics theory agreed with experimental

results presented in Chapter V. All terms in the microfacet model are now explained

in relation to scalar wave optics models. An understanding of the cross section con-

version term is developed. This development makes it possible to replace certain

terms in existing closed-form BRDF models with a different closed-form term called

the polarization factor, Q, to eliminate the need to use the cross section conversion

term that diverges at grazing angles. This connection resulted in better fits to ex-

perimental data of very rough samples at large θi or θs. Additionally, the polished

expression for the scalar wave optics BRDF exhibited a different angular dependence

not modeled by the microfacet BRDF, suggesting why the model does not currently

fit polished BRDF data well.
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Relating to a novel theoretical analysis performed in Chapter VI, the wavelength

dependence, and in particular considering the potential wavelength variation of the

specular lobe (which is where the error was found to be most significant in current

BRDF databases such as the NEF), both the theory and the experimental results for

very rough samples show that there is no wavelength dependence of the width of the

specular lobe. At the other extreme, the theory and experimental results for polished

Ni both showed a linear increase in specular lobe width as a function of wavelength.

For materials in between these two extremes, the experimental results show there

is typically an inverse relationship between wavelength and BRDF width, although

this relationship is not a constant power of λ, and as mentioned above it appears

from examining the BRDF data that a separate spectral lobe is apparently appearing

superimposed over a more broad BRDF. Returning to the theoretical developments,

and considering other terms besides the width of the specular lobe, the BRDF theory

shows a λ4 dependence is present for a polished material, but for a very rough material

there is no such dependence on λ. Although a theoretical basis for this dependence

has not been explicitly developed yet, the connection between microfacet and scalar

wave optics BRDF models developed in this dissertation pave the way for future work

to explicitly determine how this occurs by performing numerical calculations based

on the GHS model in the general case, and based on the infinite summation given

in Equation (113) for the simplified case of a Gaussian surface and paraxial data.

The theoretical analysis also suggested the angular term (cos θi+cos θs) is multiplied

in both the exponential and in the surface reflection term (as compared to the very

rough case). This suggests an empirical form of an angular term that may vary

with wavelength, the exact dependence of which could also be fleshed out in future

numerical work. Thus, the basis for a closed-form spectral BRDF model has now

been developed in this work.
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7.2 Summary of Contributions

Although the BRDF models in Chapter III are not novel, the task of organizing

the model into the same common form presented in Table 3.1, then using that table

to develop novel BRDF models by replacing the microfacet distribution function as

discussed in [5] and Chapter V is novel. BRDF data in the MWIR and LWIR is

typically collected at 3.39 µm and 10.6 µm, so the collection of BRDF data at inter-

mediate wavelengths using the CASI R© also represents a novel contribution contained

in this work.

The observations made in Chapter V indicated that microfacet BRDF models

are primarily useful for fitting to rough surfaces. For polished surfaces, or even

for glossy surfaces, the fit was not observed to be good. These results showed it

is not straightforward to modify the microfacet BRDF model to include a simple

wavelength scaling without further refining the closed-form approximation in the

microfacet model. This negative result resulted in a shift in the approach taken

by this work, to connect microfacet BRDF models with scalar wave optics BRDF

models.

The relationship between the microfacet BRDF and the scalar wave optics BRDF

had not been formally developed in prior literature as was performed in Chapter VI

and in [10]. The relationships between direction cosine space and microfacet space

are novel, as is the ability to use the polarization factor Q in place of the infinite

plane wave Fresnel approximation F , which eliminates the need for a cross section

conversion term σ, thereby avoiding the problem of the BRDF diverging at grazing

angles. As shown at the end of Chapter VI, this development led to improved BRDF

fitting even without a geometric attenuation term, G. The impact was most significant

for large θi or θs.

The very rough and polished surface comparisons also represent a novel contribu-
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tion resulting from this dissertation. For the very rough case, the microfacet model

was found to fit measured BRDF data well; however, this fitting broke down as a

surface became more highly polished. This was backed by the developed theory for

these two cases. For wavelengths between these regions, when the wavelength is on

order of the surface roughness, there appears to be an emerging second specular peak

that is inherently different from the microfacet model form when the data is viewed

on a log plot, such as in Figure 65(a). These results illustrate a fundamental issue

with the microfacet BRDF model, in which the microfacet distribution function is

incapable of describing a BRDF peak which appears to be comprised of the sum a

diffuse BRDF (due to random phasing that masks diffractive effects) and a specular

peak (which emerges as the phasing becomes less randomized relative to the wave-

length of light). To enable a theoretical basis upon which this effect can be further

analyzed, all terms of a scalar wave optics model have been related to the microfacet

model in Chapter VI, which opens the door to quantifying this intermediate region.

7.3 Future Work

A basis is now developed to outline the form of a novel closed-form expression

that captures the wavelength dependence of the BRDF. To this end, the most natu-

ral extension of this work is to perform an in-depth numerical analysis of Equation

(113), representing the in-plane ASF as derived from MBK theory through use of an

infinite summation. Now that the microfacet and scalar wave optics models have been

connected, for different surface parameters, the summation could be evaluated numer-

ically and compared to closed-form microfacet BRDF approximations to understand

how the angular and spectral form of the BRDF varies in between the two extremes of

very rough or polished surfaces. The work in Chapter VI suggests two possible bounds

on how the angular scaling and wavelength dependence change, which could be com-
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pared to the results from the infinite summation. After performing this analysis for

the infinite summation using MBK, the task could then be extended to GHS theory,

which includes an out-of-plane description of the BRDF, to determine any possible

azimuthal change in the microfacet closed-form BRDF approximation as a surface

becomes smoother. The results of such a task could then be evaluated against experi-

mental data collected in this dissertation. After performing this analysis for materials

following Gaussian statistics, such an analysis could be extended to other materials

using numerical techniques to calculate the Fourier Transform required by scalar wave

optics models. The results of such a task could then be evaluated against experimen-

tal data collected in this dissertation (since the materials measured in this work do

not necessarily follow Gaussian surface statistics). This analysis would lead directly

to novel closed-form models of the BRDF that could provide better spectral fitting,

and may additionally lead to development of novel BRDF distribution functions.

A complementary experimental technique for future work would be to measure

the surface properties of each BRDF sample. From this measurement, the correlation

length, surface height, and surface probability distribution function could be calcu-

lated. This would give actual values to use for those terms in scalar wave optics

models, rather than using best fit values, and may be helpful when performing the

numerical analysis of the ASF.

As a separate task, the AFIT CASI R© could be used to make spectral pBRDF

measurements. Such a process could result in novel material identification techniques,

once a more adequate closed-form approximation is developed from the future numeri-

cal work. Such a development could improve understanding on how to polarize a novel

spectral BRDF model developed from the previous task.

The BRDF model background in Chapter III and contained, in part, in [5] that

writes common models in a standard form, could be expanded and converted into
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a review article or field guide. Additionally, based on the work in Chapter VI, it

is now possible to include scalar wave optics models in such a document, thereby

allowing the use of some ideas from scalar wave optics to be combined with ideas

from microfacet BRDF models.

Relating to the method of using different distribution functions to fit data better,

as discussed in [5] and Chapter V, an effort is underway (but as yet unfinished) to

fit all materials in the MERL database to the modified Cook-Torrance BRDF model

with the Hyper-Cauchy distribution as compared to using the more common Gaussian

(Beckmann) distribution.

Based on the results of this dissertation, another enhancement may be possible

using the Cook-Torrance BRDF model, but with the polarization factor Q in place

of the Fresnel reflectance F and fitting to data in the MERL database, which con-

tains densely measured BRDF data in red, green, and blue channels for 100 different

materials. With rough samples collected in this dissertation, using Q in place of F ,

using Equation (149), improved the quality of fit. Since the MERL database includes

densely measured BRDF data, the observed impact on in-plane and out-of-plane data

could be more thoroughly analyzed using this approach, although the MERL BRDF

data does not span the same dynamic range in BRDF value as the CASI R© data and

is broadband, visible spectrum data.

Another suggestion for future work is to perform a comprehensive analysis of the

relationship between S and 2FG/Q presented in Equation (149) that was developed

in Chapter VI, and in References [7] and [10]. Such an approximation may still be

desirable even though F and Q are closed-form equations for two reasons: Q is not

straightforward to compute, as can be seen in Equations (100)-(104), and there is not

a consensus on the best term to use for G. Heitz has developed a geometric analysis

of G in [32], but that approach ignores physical optics. Instead, developing G by
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approximating Equation (149) may prove to be more promising, as suggested by the

better fitting to rough surfaces shown at the end of Chapter VI.
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